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ABSTRACT

Limited Dependent Variable Correlated Random Coefficient Panel Data Models.

(August 2012 )

Zhongwen Liang, B.S., Wuhan University; M.S., Wuhan University

Co-Chairs of Advisory Committee: Dr. Qi Li Dr. Joel Zinn

In this dissertation, I consider linear, binary response correlated random coeffi-

cient (CRC) panel data models and a truncated CRC panel data model which are

frequently used in economic analysis. I focus on the nonparametric identification

and estimation of panel data models under unobserved heterogeneity which is cap-

tured by random coefficients and when these random coefficients are correlated with

regressors.

For the analysis of linear CRC models, I give the identification conditions for

the average slopes of a linear CRC model with a general nonparametric correlation

between regressors and random coefficients. I construct a
√

n consistent estimator

for the average slopes via varying coefficient regression.

The identification of binary response panel data models with unobserved hetero-

geneity is difficult. I base identification conditions and estimation on the framework

of the model with a special regressor, which is a major approach proposed by Lewbel

(1998, 2000) to solve the heterogeneity and endogeneity problem in the binary re-

sponse models. With the help of the additional information on the special regressor,

I can transfer a binary response CRC model to a linear moment relation. I also con-

struct a semiparametric estimator for the average slopes and derive the
√

n-normality

result.

For the truncated CRC panel data model, I obtain the identification and estima-

tion results based on the special regressor method which is used in Khan and Lewbel
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(2007). I construct a
√

n consistent estimator for the population mean of the random

coefficient. I also derive the asymptotic distribution of my estimator.

Simulations are given to show the finite sample advantage of my estimators.

Further, I use a linear CRC panel data model to reexamine the return from job

training. The results show that my estimation method really makes a difference,

and the estimated return of training by my method is 7 times as much as the one

estimated without considering the correlation between the covariates and random

coefficients. It shows that on average the rate of return of job training is 3.16% per

60 hours training.



www.manaraa.com

v

DEDICATION

To my mother and father



www.manaraa.com

vi

ACKNOWLEDGMENTS

This dissertation was written under the supervision of my chief advisor, Professor

Qi Li. In the past five years, I have learned a lot from Professor Li, especially the

nonparametric econometric methods. I really admire his deep and broad knowledge,

his diligence and excellence in research, and his fastness in thinking. Without his

continuous guidance and encouragement and the extensive discussions with him, I

could not achieve these research results. I would like to thank Professor Li for leading

me to this fruitful field, and all of valuable advice he gives to me.

I am also very grateful to Professor Joel Zinn for serving as the co-chair of my

dissertation committee, and to Professor Dennis W. Jansen and Professor Ke-Li Xu

for serving as my dissertation committee members. Their knowledge and valuable

suggestions broaden my understanding of different aspects of my research.

Thanks also go to all my friends, the department faculty and staff for their help

along the way of the pursue of my Ph.D. degree.

Finally, I thank my mother and father for their persistent encouragement and

their love.



www.manaraa.com

vii

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Binary Response Models . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Truncated Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. LINEAR CRC PANEL DATA MODELS . . . . . . . . . . . . . . . . . . 8

2.1 Identification of Linear CRC Models . . . . . . . . . . . . . . . . . . 8
2.1.1 The Cross Sectional Data Case . . . . . . . . . . . . . . . . . 9
2.1.2 The Panel Data Case . . . . . . . . . . . . . . . . . . . . . . 13

2.2 A Correlated Random Coefficient Panel Data Model . . . . . . . . . 16

3. BINARY RESPONSE CRC PANEL MODELS . . . . . . . . . . . . . . . 22

3.1 Identification of a Binary Response CRC Panel Model . . . . . . . . . 22
3.2 Estimation of the Binary Response CRC Panel Model . . . . . . . . . 25

4. A TRUNCATED CRC PANEL DATA MODEL . . . . . . . . . . . . . . 28

4.1 Identification of the Truncated CRC Panel Model . . . . . . . . . . . 28
4.2 Estimation of the Truncated CRC Panel Model . . . . . . . . . . . . 31

5. MONTE CARLO SIMULATIONS AND EMPIRICAL APPLICATION . 36

5.1 Monte Carlo Simulation Results . . . . . . . . . . . . . . . . . . . . 36
5.1.1 Linear CRC Panel Data Models . . . . . . . . . . . . . . . . . 36
5.1.2 Binary Response CRC Models . . . . . . . . . . . . . . . . . . 41
5.1.3 A Truncated CRC Panel Data Model . . . . . . . . . . . . . . 44

5.2 An Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . 46

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



www.manaraa.com

viii

Page

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

APPENDIX A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

APPENDIX B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

APPENDIX C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



www.manaraa.com

ix

LIST OF TABLES

TABLE Page

5.1 MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP1 . . . . . . . . . . . . 39

5.2 MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP2 . . . . . . . . . . . . 39

5.3 MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP3 . . . . . . . . . . . . 40

5.4 MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP4 . . . . . . . . . . . . 40

5.5 MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP5 . . . . . . . . . . . . 42

5.6 MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP6 . . . . . . . . . . . . 42

5.7 MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP7 . . . . . . . . . . . . 43

5.8 MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP8 . . . . . . . . . . . . 43

5.9 MSE of γ̂, β̂0, β̂1 for DGP9 . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.10 MSE of γ̂, β̂0, β̂1 for DGP10 . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.11 MSE of γ̂,, β̂0, β̂1 for DGP11 . . . . . . . . . . . . . . . . . . . . . . . . 45

5.12 MSE of γ̂, β̂0, β̂1 for DGP12 . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.13 Estimation results of (5.3) by OLS and nonparametric methods . . . . . 47

5.14 Estimation results of (5.2) with nonlinear functional form in training . . 48



www.manaraa.com

1

1. INTRODUCTION

Recently, the correlated random coefficient model has drawn much attention. As

stated in Heckman et al. (2010), “The correlated random coefficient model is the

new centerpiece of a large literature in microeconometrics”. In this dissertation, first

I consider linear CRC panel data models in the form of

yit = x>itβi + uit, (i = 1, ..., n; t = 1, ..., T ) (1.1)

where xit denotes regressors with random coefficient βi, and uit is the error term.

Also, I consider binary response CRC panel data models in the form of

yit = 1(v>itγ + x>itβi + uit > 0), (i = 1, ..., n; t = 1, ..., T ) (1.2)

where 1( · ) is the indicator function, vit denotes regressors with constant coefficient

γ, xit denotes regressors with random coefficient βi, and uit is the error term. Finally,

I consider a truncated CRC panel data model

y∗it = vitγ + x>itβi + uit, (i = 1, ..., n; t = 1, ..., T )

yit = y∗it|y∗it ≥ 0, (1.3)

where vit denotes regressors with constant coefficient γ, xit denotes regressors with

random coefficient βi, and uit is the error term. Here, xit can include 1 as a com-

ponent. Thus, the panel data models with fixed effects corresponding to each model

are special cases of these models. I allow the general correlation between the random

coefficient βi and the regressor xit. I focus on the nonparametric identification and

estimation of the mean of random slope βi in these models and related transformed

models, which will be more specific in later sections.

This dissertation follows the style of Journal of Econometrics.
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1.1 Linear Models

Linear models are among the mostly used models. The reason is its simplicity

and direct economic interpretability. However, for most empirical applications the

plain linear models suffer from the lack of flexibility, e.g., the traditional estimators

will not be consistent under endogeneity and heterogeneity problem. Recently, corre-

lated random coefficient models are proposed to deal with unobserved heterogeneity

problem. Further, with panel data available, we can capture the endogeneity and

heterogeneity more easily. In this dissertation, I consider the linear CRC panel data

models first. This will also serve as the foundation for the methods I will use for the

binary and truncated models.

We can motivate the usefulness of the linear CRC panel data models by an

empirical application. In labor economics, we are interested in the return from the

job training. We regress the logarithm of wage on a job training variable which is

the accumulated hours spent on the job training. Then its coefficient is the rate of

return from the training. We know that other things being the same, still different

people will get different payoffs even they took same amount of training. This means

that there exists unobserved heterogeneity. One way to capture it is to use a random

coefficient model. So we will have the coefficient of the job training variable to be

random. From the theory of human capital, we know that the marginal return from

the job training is diminishing as the level of job training increases. So there is a

negative correlation between the job training variable and its coefficient which is

the rate of return from the job training. Moreover, there is a selection problem.

Individuals with lower marginal return may receive less training, which means there

is also a positive correlation. So there must exist correlation between the job training

variable and its random coefficient. Also the panel data model gives us the advantage

to capture the correlation between regressors and other unobserved heterogeneity by

the fixed effects term. A linear CRC panel data model is a good candidate for this

type of question.
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There is a large literature about the CRC model. Heckman and Vytlacil (1998)

is among the very first papers. Motivated by the diminishing return of schooling,

they discussed the instrumental variable methods for the cross-sectional setting of

CRC model. Wooldridge (2003) gave weaker conditions for the two-stage plug-in

estimator proposed by Heckman and Vytlacil (1998). Wooldridge (2005) gave a

sufficient condition for the fixed effects estimator to be consistent. Murtazashvili and

Wooldridge (2008) investigates the fixed effects instrumental variables estimation for

the linear CRC panel data model.

Recently, there is a growing literature on CRC models. Graham and Powell

(2012) discuss the identification and estimation of average partial effects in a class

of “irregular” correlated random coefficient panel data models using different infor-

mation of agents from subpopulations, so called “stayers” and “movers”. Due to the

irregularity, they get an estimator with slower than
√

n convergence rate and the

normal limiting distribution. Heckman et al. (2010) and Heckman and Schmierer

(2010) investigate the tests of the CRC model.

I discuss the nonparametric identification and estimation of the population mean

of the random coefficient βi for the linear CRC panel data models in Chapter 2. I

construct a
√

n consistent estimator and derive its asymptotic normality.

1.2 Binary Response Models

Binary choice panel data models are widely used by applied researchers. One rea-

son is its direct economic interpretability. Another reason is that given the advantage

of panel data with multiple observations of the same individual over several time pe-

riods, it is possible to take into account unobserved heterogeneity. The common

approach is to include an individual-specific heterogenous effect variable additively,

which leads to a correlated random effects model or a fixed effects model. The ad-

vantage of this approach is that we can eliminate the unobservable variable by taking

the difference between different time periods and get the fixed effects estimator for
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linear models easily, see e.g. Arellano (2003), Hsiao (2003). This also resolves the

incidental parameter problem in linear panel data models. The method of taking

difference can also be extended to nonlinear panel data models in certain extent, see

Bonhonmme (2012). Though it is convenient to deal with unobserved heterogeneity

additively, economic models imply many different non-additive forms, see Browning

and Carro (2007), Imbens (2007). Among them, one class is the random coefficient

model which arises from the demand analysis with the consideration of the individual

heterogeneity.

Random coefficient models have the multiplicative individual heterogeneity. They

are popular in empirical analysis of treatment effects and the demand of products.

In the analysis of treatment effect, under certain circumstances, the binary choice

fixed-effects model can be transferred to a linear random coefficient model with the

average treatment effect being the mean of a random coefficient. For instance, in

one of the commenting papers for Angrist (2001), Hahn (2001) gives an example

on this transformation and discusses the consistency of the fixed effects estimator.

Wooldridge (2005) further allows the correlation between regressors and random

coefficients and gives the conditions that assure the consistency of the fixed effects

estimator. Motivated by the usefulness of linear CRC panel data models from this

transformation, we discuss the identification and estimation of the linea CRC panel

data models in sections 2.1 and 2.2, which will also serve as an important piece

towards the semiparametric estimation of the binary response CRC panel data model.

In the literature of demand analysis, Berry et al. (1995) propose to use the ran-

dom coefficients logit multinomial choice model to study the demand of automobiles

which has become the major vehicle of the demand analysis. However, they leave

the correlation between the random coefficients and the regressors unconsidered, and

have assumptions on the functional form of the distributions of the unobservable

variables. In this paper, we study random coefficient binary choice models without

specifying the functional form of the distribution of unobservable variables. Also,
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we allow for non-zero correlation between regressors and random coefficients. For

simplicity, we only consider binary choice models.

Other related literature includes three aspects: random coefficient models, panel

data models with unobserved heterogeneity, and models with a special regressor.

Both of these literatures have been developed considerably in the last two decades.

Random coefficient models have a long history. Swamy and Tavlas (2007) and Hsiao

and Pesaran (2008) are good surveys for these models. For binary random coefficient

models, Hoderlein (2009) consider a binary choice model with endogenous regressors

under a weak median exclusion restriction. He uses a control function IV approach

to identify the local average structural effect of the regressors on the latent vari-

able, and derives
√

n consistency and the asymptotic distribution of the estimator

he proposed. He also proposes tests for heteroscedasticity, overidentification and

endogeneity. Some parts of the literature concern distributions of the random coeffi-

cients. Recent ones include Arellano and Bonhomme (2012), Fox and Gandhi (2010),

Hoderlein et al. (2010).

Among the recent developments of panel data models, the nonseparable panel

data models is an indispensable part. Chernozhukov et al. (2009) investigate quan-

tile and average effects in nonseparable panel models. Evdokimov (2010) discusses

the identification and estimation of a nonparametric panel data model with nonsep-

arable unobserved heterogeneity. He obtains point identification and estimation via

conditional deconvolution. Hoderlein and White (2012) give nonparametric identifi-

cation in nonseparable panel data models with generalized fixed effects.

The identification of discrete choice model is different from linear models. The

framework I adopt in this paper for the identification of the average slope in binary

response CRC panel data models is the special regressor method, which assumes the

existence of a special regressor with additional information. Proposed by Lewbel

(1998, 2000), this method has been exploited extensively in different settings. It is

an effective way for identification and estimation of heterogeneity and endogeneity.
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Honoré and Lewbel (2002) use this method to study a binary choice fixed effects

model which allows for general predetermined explanatory variables and give a
√

n

consistent semiparametric estimator. Dong and Lewbel (2011) give a good survey

for this method.

In Chapter 3, I base the identification for binary CRC panel data models on

the special regressor method. I construct a
√

n consistent estimator for the popu-

lation mean of the random coefficient based on my identification result. Also, the

asymptotic normality result is derived.

1.3 Truncated Models

Censored and truncated models are commonly used in economics when we don’t

have complete observation of the population. Due to the heterogeneity of the pop-

ulation, it is desirable to have models that can take account of the unobserved het-

erogeneity. One way is to consider a censored or truncated panel data model with

additive unobserved individual-specific random variable, i.e. fixed-effects. This was

studied by Honoré (1992), who proposed a trimming strategy that can get rid of the

unobserved variable via difference. However, the nonadditive heterogeneity arises

naturally in economic analysis. In this dissertation, I consider a truncated panel

data model which has multiplicative heterogeneity.

The model I consider is as in (1.3). The underlying model is a linear panel

data model, and we can observe the dependent variables only when they are strictly

positive. I allow the general correlation between the random coefficient βi and the

regressor xit, and I do not assume the distribution function of uit to be known. I

focus on the nonparametric identification and estimation of the population mean β

of random slope βi in this model. I assume that (y∗it, vit, xit, βi) are drawn from the

underlying untruncated distribution. I use E∗ to denote the expectation with respect

to this distribution and assume E∗(uit|xi1, . . . , xiT , βi) = 0.
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I will use the special regressor method proposed by Lewbel (1998, 2000) for the

identification and estimation of our model. Due to the nonadditivity of the unob-

served heterogeneity, the idea from Honoré (1992) cannot be generalized to this case.

I base the identification on similar idea from Khan and Lewbel (2007) which uses the

special regressor method to study a cross-sectional truncated regression model. In

Chapter 4, I extend their method to a truncated CRC panel data model. For simplic-

ity, I assume that vit is a scalar regressor and is the special regressor which satisfies

three conditions. Further, although the observation of the dependent variable yit

can only be partially observed, in order to achieve the identification, I assume that

we can estimate the untruncated population distribution of the regressors (vit, xit).

Once I get the identification result, I construct a
√

n consistent estimator from the

identification.
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2. LINEAR CRC PANEL DATA MODELS

2.1 Identification of Linear CRC Models

In this section I consider the identification conditions for linear CRC panel data

models. The linear CRC panel data models can be motivated as follows, which is

given in Hahn (2001).

Suppose we have an unobserved fixed effects panel probit model with two periods,

P (yit = 1|ci, xi1, xi2) = Φ(ci +θxit), i = 1, . . . , n, t = 1, 2, where Φ( · ) is the standard

normal cumulative distribution function, ci is the unobserved heterogenous effect,

and xit denotes a binary treatment variable. It is difficult to identify the slope

coefficient θ without additional assumptions on the conditional distribution of ci

conditioning on (xi1, xi2). However, the average treatment effect β = E[Φ(ci + θ)−
Φ(ci)] can be analyzed by a transformation, i.e., we can transfer the probit model

to a linear random coefficient model, yit = ai + bixit + uit, i = 1, . . . , n, t = 1, 2,

where ai ≡ Φ(ci), bi ≡ Φ(ci + θ) − Φ(ci), and uit ≡ yit − E(yit|xi1, xi2, ci). Hahn

assumes the independence of yi1 and yi2 conditional on (xi1, xi2, ci). He also assumes

(xi1, xi2) = (0, 1) which means no individual is treated in the first period and all are

treated in the second period, and which also implies the independence of treatment

variables (xi1, xi2) and the unobserved heterogeneity ci. In general, xit could be

correlated with ci.

I consider the linear random coefficient models with general correlation between

random coefficients and regressors in sections 2.1 and 2.2. For simplicity, I assume

there is no regressor with constant coefficient in model (1.2) in sections 2.1 and 2.2.

In section 2.1.1 I first consider a CRC model with cross sectional data. I discuss

how to obtain consistent estimate for the mean slope coefficient. In this case, the

condition for the identification of the average effect is quite stringent, and may even

be unrealistic for many applications. I then show that panel data can provide more
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information and help to identify the mean slopes. The identification conditions when

panel data is available are given in section 2.1.2.

2.1.1 The Cross Sectional Data Case

I consider the following CRC model with cross sectional data.

yi = x>i βi + ui, (i = 1, ..., n) (2.1)

where xi is a d × 1 vector, βi = β + αi is of dimension d × 1, β is a d × 1 constant

vector, αi is i.i.d. with (0, Σα), Σα is a d× d positive definite matrix, the superscript

> denotes the transpose, and ui is i.i.d. with (0, σ2
u) and is orthogonal to (xi, αi), i.e.,

E(ui|xi, αi) = 0. I allow for αi to be arbitrarily correlated with xi. Let E(αi|xi) =

g(xi), where g( · ) is a smooth function but its specific functional form is not specified.

For example we could have g(xi) = Γ(xi−E(xi)), where Γ is d×d matrix of constants.

However, I allow for g(xi) to have any other unknown functional form.

Replacing βi by β + αi, I can rewrite (2.1) as

yi = x>i β + x>i αi + ui

= x>i β + vi, (2.2)

where vi = x>i αi + ui. Note that E(vi|xi) = x>i E(αi|xi) = x>i g(xi) 6= 0, so the OLS

estimator of β based on (2.2) is biased and inconsistent in general. Indeed it is easy

to see that the OLS estimator of β based on (2.2) is given by

β̂OLS = β +

[
n−1

∑
i

xix
>
i

]−1

n−1
∑

i

[xix
>
i αi + xiui]

p→ β + [E(xix
>
i )]−1E[xix

>
i αi], (2.3)
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because E[xiui] = 0. Hence, whether β̂OLS consistently estimates β depends on

whether E[xix
>
i αi] = 0 or not.

For expositional simplicity let us consider a simple case that x>i = (1, x̃i), where

x̃i is a scalar. In this case we have (αi = (α1i, α2i)
>)

E[xix
>
i αi] = E





 1 x̃i

x̃i x̃2
i





α1i

α2i







=


 E(x̃iα2i)

E(x̃iα1i + x̃2
i α2i)


 (2.4)

where we use E(α1i) = 0. For E[xix
>
i αi] to be zero, from (2.4) we know that it

requires α1i to be orthogonal to x̃i, and α2i to be orthogonal to x̃2
i , which are unlikely

to be true in practice. Hence, β̂OLS is biased and inconsistent for β in general.

Below I show that a semiparametric estimation method can consistently estimate

β in a univariate CRC model. For a general multivariate regression model, additional

assumptions are required for identification. For a univariate CRC model

yi = xiβi + ui,

where xi is a scalar, βi = β +αi, E(αi) = 0 and E(ui|xi, αi) = 0. Thus, E(ui|xi) = 0.

Let g(xi) = E(αi|xi), we have

E(yi|xi = x) = x(β + g(x)) ≡ xθ(x),

where θ(x) = β + g(x). If θ(x) is identified, since E(g(xi)) = 0 by E(αi) = 0, we

have β = E(θ(xi)). For the univariate case, it is easy to identify θ(x) by θ(x) =
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E(yi|xi = x)/x (for x 6= 0). Hence, I can use the standard nonparametric estimation

method to estimate θ(x). Say, by the local constant kernel method:

θ̂(xi) =

[∑
j

x2
jKh,ji

]−1 n∑
j=1

xjyjKh,ji,

where Kh,ji = K((xj − xi)/h), K( · ) is the kernel density function, and h is the

smoothing parameter. Then β can be consistently estimated by n−1
∑n

i=1 θ̂(xi).

However, for a general multivariate regression model, β is not identified in general

if only cross section data is available. I use a bivariate regression model to illustrate

the difficulty of identification. Let xi = (x1i, x2i)
>, and we consider a CRC model as

yi = x1iβ1i + x2iβ2i + ui, (2.5)

with β1i = β1+α1i, β2i = β2+α2i, E(α1i) = 0, E(α2i) = 0, and E(ui|x1i, x2i, α1i, α2i) =

0. Hence, I have E(ui|x1i, x2i) = 0. Consequently, I have

E(yi|x1i = x1, x2i = x2) = x1θ1(x1, x2) + x2θ2(x1, x2),

where θ1(x1, x2) = β1 + E(α1i|x1i = x1, x2i = x2) and θ2(x1, x2) = β2 + E(α2i|x1i =

x1, x2i = x2). However, if we only have cross sectional data, θ1( · ) and θ2( · ) are

not identified, since x1θ1(x1, x2) + x2θ2(x1, x2) = x1θ3(x1, x2) + x2(
x1

x2
θ1(x1, x2) −

x1

x2
θ3(x1, x2)+θ2(x1, x2)) ≡ x1θ3(x1, x2)+x2θ4(x1, x2), where θ4(x1, x2) = x1

x2
θ1(x1, x2)−

x1

x2
θ3(x1, x2) + θ2(x1, x2), if x2 6= 0.

Put it in another view, from

E(yi|x1i = x1, x2i = x2) = x1θ1(x1, x2) + x2θ2(x1, x2),

we have only one equation, and we cannot uniquely identify two unknown functions

θ1( · ) and θ2( · ). It has infinitely many solutions.
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Even though for d ≥ 2 the cross section data model cannot identify β in general, it

is possible to identify β under additional assumptions. Suppose there exists another

random variable zi such that

E(αi|x1i, x2i, zi) = E(αi|zi) = g(zi), (2.6)

for example, we may have zi = x1i + x2i. (2.6) states that αi is correlated with

(xi1, xi2) only through zi. Then model (2.5) can be rewritten as

yi = x1i(β1 + g1(zi)) + x2i(β2 + g2(zi)) + εi

= xi1θ1(zi) + x2iθ2(zi) + εi

= x>i θ(zi) + εi, (2.7)

where g1(zi) = E(α1i|zi), g2(zi) = E(α2i|zi), εi = x1i(α1i−g1(zi))+x2i(α2i−g2(zi))+

ui, xi = (x1i, x2i)
>, and θ(zi) = (θ1(zi), θ2(zi))

>. By construction, E(εi|x1i, x2i, zi) =

0.

Model (2.7) is a varying coefficient model, hence, one can consistently estimate

θ(z) provided that E(xix
>
i |zi = z) is a nonsingular matrix for almost all z ∈ Sz,

where Sz is the support of zi. Then a kernel estimator

θ̂(z) =

[
n∑

j=1

xjx
>
j Kh,zjz

]−1 n∑
j=1

xjyjKh,zjz

will consistently estimate θ(z) under quite general conditions, where Kh,zjz = K((zj−
z)/h). A consistent estimator of β is given by n−1

∑n
i=1 θ̂(zi), and the consistency

follows from E(θ(zi)) = β (because E(αi) = 0 implies E(g(zi)) = 0). However, the

existence of such a variable zi may not be easily justified in practice. Below we show

that even without this additional assumption, it is possible to identify β with the

help of panel data.
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2.1.2 The Panel Data Case

Panel data will provide us more information and help us to identify the unknown

functions. For heuristics let us consider an example with a bivariate variable xit, i.e.,

yit = x1itβ1i + x2itβ2i + uit, (i = 1, ..., n; t = 1, ..., T )

with β1i = β1+α1i, β2i = β2+α2i, E(α1i) = 0, E(α2i) = 0, and E(uit|x1i1, x2i1, . . . , x1iT ,

x2iT , α1i, α2i) = 0.

Then we have E(uit|x1i1, x2i1, . . . , x1iT , x2iT ) = 0. Hence, we have

E(yi1|x1i1 = x11, x2i1 = x21, . . . , x1iT = x1T , x2iT = x2T )

= x11θ1(x11, x21, . . . , x1T , x2T ) + x21θ2(x11, x21, . . . , x1T , x2T ),

...

E(yiT |x1i1 = x11, x2i1 = x21, . . . , x1iT = x1T , x2iT = x2T )

= x1T θ1(x11, x21, . . . , x1T , x2T ) + x2T θ2(x11, x21, . . . , x1T , x2T ).

where

θ1(x1i1, x2i1, . . . , x1iT , x2iT ) = β1 + E(α1i|x1i1, x2i1, . . . , x1iT , x2iT )

θ2(x1i1, x2i1, . . . , x1iT , x2iT ) = β2 + E(α2i|x1i1, x2i1, . . . , x1iT , x2iT ).

Once θ1( · ) and θ2( · ) are identified, β1 and β2 are identified through relations

β1 = E[θ1(x1i1, x2i1, . . . , x1iT , x2iT )] and β2 = E[θ2(x1i1, x2i1, . . . , x1iT , x2iT )], since

E(α1i) = 0 and E(α2i) = 0.
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We face a system of linear equations. If T ≥ 2 and

L =




x11 x21

...
...

x1T x2T




> 


x11 x21

...
...

x1T x2T


 =




∑T
t=1 x2

1t

∑T
t=1 x1tx2t

∑T
t=1 x1tx2t

∑T
t=1 x2

2t


 (2.8)

is nonsingular (i.e., when (
∑T

t=1 x2
1t)(

∑T
t=1 x2

2t) > (
∑T

t=1 x1tx2t)
2), then we can solve

θ1( · ) and θ2( · ) uniquely. Specifically, we have


θ1(x11, x21, . . . , x1T , x2T )

θ2(x11, x21, . . . , x1T , x2T )


 =







x11 x21

...
...

x1T x2T




> 


x11 x21

...
...

x1T x2T







−1

×




x11 x21

...
...

x1T x2T




> 


E(yi1|x1i1 = x11, x2i1 = x21, . . . , x1iT = x1T , x2iT = x2T )

· · ·
E(yiT |x1i1 = x11, x2i1 = x21, . . . , x1iT = x1T , x2iT = x2T )


 .

In general, for a panel CRC model with d × 1 vector xit, it requires T ≥ d. In

order the matrix M defined in (2.8) to be invertible, we also need enough variation

of xit across t. Once θ( · ) is identified, from E(αi) = 0 we obtain E(θ(xi)) = β.

Hence, we can consistently estimate β by

β̂Semi =
1

n

n∑
i=1

θ̂(xi), (2.9)

where θ̂(xi) is some standard semiparametric estimator.
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In fact when T ≥ d, one can also first estimate βi based on individual i’s T

observations: β̂i,OLS = [
∑T

t=1 xitx
>
it ]
−1

∑T
t=1 xityit, then average it over i from 1 to n

to obtain a group mean (GM) estimator for β given by

β̂GM =
1

n

n∑
i=1

β̂i,OLS. (2.10)

It is easy to show that
√

n(β̂GM −β)
d→ N(0, VGM), where VGM = Σα +V2 with V2 =

E[(
∑T

t=1 xitx
>
it)
−1(

∑T
t=1

∑T
s=1 uituisxitx

>
is)(

∑T
t=1 xitx

>
it)
−1]. If uit is serially uncorre-

lated and conditionally homoscedastic, then V2 simplifies to V2 = σ2
uE[(

∑T
t=1 xitx

>
it)
−1],

where σ2
u = E(u2

it|xi1, ..., xiT ). However, I expect large bias in the finite sample esti-

mation when T is small.

The condition that T ≥ d can be relaxed under additional assumptions. Sup-

pose there exists a random variable zi (zi can be a vector) such that E(αi|xit, zi) =

E(αi|zi) ≡ g(zi), for example, we may have zi = x̄i · ≡ T−1
∑T

t=1 xit, so that

αi is correlated with (xi1, ..., xiT ) only through x̄i · . In this case we may have
∑T

t=1 E(xitx
>
it |zi = z) to be a nonsingular matrix even when T < d. As long as

∑T
t=1 E(xitx

>
it |zi = z) is invertible for almost all z ∈ Ωz, I can consistently estimate

θ(z) for z ∈ Ωz by

θ̂(z) =

[
n∑

j=1

T∑
s=1

xjsx
>
jsKh,zjz1εn(z)

]−1 n∑
j=1

T∑
s=1

yjsxjsKh,zjz1εn(z), (2.11)

where Kh,zjz = K((zj−z)/h), Ωz = {z ∈ Sz : minl∈{1,...,q} |zl−z0,l| ≥ εn for some z0 ∈
∂Sz}, and 1εn(z) is a trimming function which ensures to avoid singularity problem

and boundary bias and will be more explicit in section 2.2. Furthermore, I can

consistently estimate β by

β̂Semi =
1

n

n∑
i=1

θ̂(zi),

where θ̂(zi) is obtained from (2.11) with z being replaced by zi.
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It can be shown that, under some standard regularity conditions,
√

n(β̂Semi −
β)

d→ N(0, V ) for some positive definite matrix V , we discuss the estimation and the

asymptotic analysis of β̂Semi in the next section.

2.2 A Correlated Random Coefficient Panel Data Model

In this section I consider a CRC panel data model as follows

yit = x>itβi + uit, (i = 1, ..., n; t = 1, ..., T ) (2.12)

where xit is a d× 1 vector, βi = β + αi is of dimension d× 1, β is a d× 1 constant

vector, αi is i.i.d. with (0, Σα), Σα is a d× d positive definite matrix, and uit is i.i.d.

with (0, σ2
u) and is orthogonal to (xi, αi). We allow αi to be correlated with xit.

I can rewrite (2.12) as

yit = x>itβ + x>itαi + uit, (2.13)

E(uit|xi1, . . . , xiT , αi) = 0. Let zi satisfy the condition that E(uit|xit, zi) = 0 and

E(αi|xit, zi) = E(αi|zi) ≡ g(zi). For example I can have zi = x̄i · ≡ T−1
∑T

t=1 xit

or zi = xi = (x>i1, ..., x
>
iT )>. Define ηi = αi − E(αi|zi) and εit = x>itηi + uit. By

construction I have E(εit|xit, zi) = 0.

Then I have

yit = x>itβ + x>itg(zi) + εit = x>itθ(zi) + εit, (2.14)

where θ(z) = β + g(z). Note that equation (2.14) is a semiparametric varying

coefficient model. Hence, I can estimate θ(z) by some standard semiparametric

estimator, say, kernel-based local constant or local polynomial estimation methods.

From E(g(zi)) = 0 I obtain β = E(θ(zi)). Let θ̂(z) denote a generic semiparametric

estimator of θ(z), I estimate β by

β̂ =
1

n

n∑
i=1

θ̂(zi).
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Let 1εn(zi) = 1{zi ∈ Ωz}, and Ωz = {z ∈ Sz : minl∈{1,...,q} |zl−z0,l| ≥ εn for some

z0 ∈ ∂Sz}, where ∂Sz is the boundary of the compact set Sz which is the support

of zi, ‖h‖/εn → 0 and εn → 0, as n → ∞. If we take zi = x̄i · , I can get a

semiparametric estimator using local constant kernel estimation

β̂Semi,1 =
1

n

n∑
i=1

θ̂V C,1(x̄i),

where

θ̂V C,1(x̄i) =

[
n∑

j=1

T∑
s=1

xjsx
>
jsKh,x̄j x̄i

1εn(x̄i · )
]−1 n∑

j=1

T∑
s=1

xjsyjsKh,x̄j x̄i
1εn(x̄i · ),

with Kh,x̄j x̄i
=

∏d
m=1 k((x̄j · ,m − x̄i · ,m)/hm).

If I take zi = xi = (x>i1, ..., x
>
iT )>, I can pool the data together and estimate β by

β̂Semi,2 =
1

n

n∑
i=1

θ̂V C,2(xi), (2.15)

where

θ̂V C,2(xi) =

[
n∑

j=1

T∑
s=1

xjsx
>
jsKh,xjxi

1εn(xi)

]−1 n∑
j=1

T∑
s=1

xjsyjsKh,xjxi
1εn(xi), (2.16)

with Kh,xjxi
=

∏d
m=1

∏T
t=1 k((xjt,m − xit,m)/htm).

Since the derivations of asymptotic distributions of β̂Semi,1 and β̂Semi,2 are special

cases of using different zi, I will provide detailed proofs without specifying zi. I

consider two types of semiparametric estimators for θ(z), local constant and local

polynomial estimation methods. The local constant estimator of θ(z) for z ∈ Ωz is

given by

θ̂LC(z) =

(
n∑

j=1

T∑
s=1

xjsx
>
jsKh,zjz1εn(z)

)−1 n∑
j=1

T∑
s=1

xjsyjsKh,zjz1εn(z), (2.17)
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where Kh,zjz = K((zj − z)/h) =
∏q

l=1 k
(

zjl−zl

hl

)
is the product kernel, k( · ) is the

univariate kernel function, zjl and zl are the lth-component of zj and z, respectively.

Then, we define β̂LC = 1
n

∑n
i=1 θ̂LC(zi).

I introduce some notations and assumptions before I present the asymptotic the-

ories. I write fi = f(zi). For the d× 1 vector θi = θ(zi), we use θil = θl(zi) to denote

the lth component of θ(zi) and use ||h|| =
√∑q

l=1 h2
l to denote the usual Euclidean

norm. I make following assumptions.

Assumption A1: (y>i , x>i , z>i ) are i.i.d. as (y>1 , x>1 , z>1 ), where y>i = (yi1, ..., yiT ),

x>i = (x>i1, ..., x
>
iT ), x>it = (xit,1, ..., xit,d), z>i = (zi,1, ..., zi,q). z>i admits a Lebesgue

density function f(z1, ..., zq) with infz∈Sz f(z) > 0, where Sz is the support of z>i

and is compact. xit is strictly stationary across time t. xit and uit have finite fourth

moment.

Assumption A2: θ(z) and f(z) are ν + 1 times continuously differentiable, where

ν is an integer defined in the next assumption.

Assumption A3: K(z) =
∏q

l=1 k(zl), where k( · ) is a univariate symmetric (around

zero) bounded νth order kernel function with a compact support, i.e.,
∫

k(v)dv = 1,
∫

k(v)vjdv = 0 for j = 1, ..., ν − 1 and µν =
∫

k(v)vνdv 6= 0, where ν is a positive

even integer, with
∫ |k(v)|vν+2dv being a finite constant.

Assumption A4: As n →∞, nh1 · · ·hq/ ln n →∞, ‖h‖2ν ln n/H → 0, n||h||2ν+2 →
0, εn → 0, ‖h‖/εn → 0, hl → 0 for all l = 1, ..., q.

Theorem 2.2.1. Under assumptions A1 to A4, I have that

√
n

(
β̂LC − β −

q∑

l=1

hν
l Bl,LC

)
d→ N(0, VLC),
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where

Bl,LC = µν

∑

k1+k2=ν,k2 6=0

1

k1!k2!
E

[
m−1

i (
∂k1mi

∂zk1
l

)(
∂k2θi

∂zk2
l

)

]
,

mi = m(zi) = T−1

T∑
t=1

E[xitx
>
it |zi]f(zi),

∂k1mi

∂zk1
l

=
∂k1m(z)

∂zk1
l

|z=zi
,

∂k2θi

∂zk2
l

=
∂k2θ(z)

∂zk2
l

|z=zi
,

VLC = V ar(θ(zi)) + T−2V ar

(
T∑

s=1

(m−1
i f(zi)xisx

>
is(αi − E(αi|zi)))

)

+T−2V ar

(
T∑

s=1

uism
−1
i xisf(zi)

)
.

We can see that the semiparametric estimator I give has a
√

n convergence rate.

The reason is well known that taking average can reduce the variance of nonpara-

metric estimators. I also use the high order kernel to reduce the bias. The proof of

Theorem 2.2.1 is given in the Appendix A.

In order to reduce the bias, I also consider the local polynomial estimation. I

introduce some notations first. Let

k = (k1, . . . , kq), k! = k1!× · · · × kq!, |k| =
q∑

i=1

ki,

zk = zk1
1 × · · · × zkq

q , hk = hk1
1 · · ·hkq

q ,

∑

0≤|k|≤p

=

p∑
j=0

j∑

k1=0

· · ·
j∑

kq=0

k1+···+kq=j

, Dkθ(z) =
∂|k|θ(z)

∂zk1
1 · · · ∂z

kq
q

.

Then I minimize the kernel weighted sum of squared errors

n∑
j=1

T∑
s=1


yjs −

∑

0≤|k|≤p

x>jsbk(z)(zj − z)k




2

Kh,zjz, (2.18)
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with respect to each bk(z) which gives an estimate of b̂k(z), and k!b̂k(z) estimates

Dkθ(z). Thus, θ̂LP = b̂0(z) is the pth order local polynomial estimator of θ(z). I

define β̂LP = 1
n

∑n
i=1 θ̂LP (zi).

Now I need θ(z) to be p + 1 times differentiable, and the local polynomial esti-

mation cannot be used together with the high order kernel. So I give the following

assumptions.

Assumption B1: (y>i , x>i , z>i ) are i.i.d. as (y>1 , x>1 , z>1 ), where y>i = (yi1, ..., yiT ),

x>i = (x>i1, ..., x
>
iT ), x>it = (xit,1, ..., xit,d), z>i = (zi,1, ..., zi,q). z>i admits a Lebesgue

density function f(z1, ..., zq) with infz∈Sz f(z) > 0, where Sz is the support of z>i

and is compact. xit is strictly stationary across time t. xit and uit have finite fourth

moment.

Assumption B2: θ(z) is p + 1 times continuously differentiable, and f(z) is three

times continuously differentiable.

Assumption B3: K(z) =
∏q

l=1 k(zl), where k( · ) is a univariate symmetric (around

zero) bounded kernel function with a compact support, i.e.,
∫

k(v)dv = 1,
∫

k(v)vidv

= 0, if 0 < i ≤ p + 2 is an odd integer and µi =
∫

k(v)vidv 6= 0, if 0 < i ≤ p + 2 is

an even integer. We define µk =
∫

vk1
1 · · · vkq

q

∏q
l=1 k(vl)dv1 . . . dvq if k is a q-tuple.

Assumption B4: As n → ∞, nh1 · · ·hq/ ln n → ∞, εn → 0, ‖h‖/εn → 0; if p > 0

is an odd integer, ‖h‖2p+2 ln n/H → 0, n||h||2p+4 → 0; if p > 0 is an even integer,

‖h‖2p+4 ln n/H → 0, n||h||2p+6 → 0; hl → 0 for all l = 1, ..., q.

Theorem 2.2.2. Under assumptions B1 to B4, I have that

√
n

(
β̂LP − β −BLP

)
d→ N(0, VLP ),



www.manaraa.com

21

where BLP = P1S
−1M

∑
|k|=p+1

µkhk

k!
E [Θi], if p is an odd positive integer, or BLP =

P1S
−1M

∑
|k|=p+2

µkhk

k!
E [Θi], if p is an even positive integer, P1, S, M and Θi are

matrices defined in the Appendix A, and

VLP = V ar(θ(zi)) + T−2V ar

(
T∑

s=1

(P1S(zi)
−1Γisx

>
is(αi − E(αi|zi))f(zi))

)

+T−2V ar

(
T∑

s=1

P1S(zi)
−1uisf(zi)Γis

)
,

where Γis is also defined in the Appendix A.

The proof of Theorem 2.2.2 is given in the Appendix A. Note that if one imposes

an additional condition that n||h||2ν → 0 or n||h||2p+2 → 0 as n → ∞ for β̂LC or

β̂LP , respectively, then the center term is asymptotically negligible, and I have the

following result:
√

n(β̂Semi − β)
d→ N(0, V ),

where β̂Semi can be β̂LC or β̂LP .
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3. BINARY RESPONSE CRC PANEL MODELS

3.1 Identification of a Binary Response CRC Panel Model

The identification of the binary response model is different from the linear mod-

els. We can identify the coefficients if we assume that the unobserved random terms

have known distributions, and this will allow us to estimate the model by condi-

tional maximum likelihood method. However, if we do not assume the distribution

of the unobserved terms, the identification becomes problematic. We need to impose

additional restrictions on the dependence structure between the regressors and the

unobservables. One way to identify the model is transferring the model to a single-

index model, which can be estimated nonparametrically. However, the single-index

model only admits limited heterogeneity, see Powell et al. (1989), Ichimura (1993),

Klein and Spady (1993), Härdle and Horowitz (1996), Newey and Ruud (2005). An-

other way of identification is based on the conditional quantile restrictions. Manski

(1985, 1988) give the identification conditions in this type for the binary response

models. A sufficient condition for the identification of the coefficients is the median

independence between the error and the regressors. He also suggests the conditional

maximum score estimator to estimate the model. However, the limiting distribution

is not standard which is derived by Kim and Pollard (1990). Horowitz (1992) modi-

fies the maximum score estimator to a smoothed maximum score estimator and gets

the asymptotic normal distribution. The convergence rates of maximum score esti-

mators are less than
√

n. Chamberlain (2010) shows that the consistent estimation

at the
√

n convergence rate is possible only when the errors have logistic distributions

without other additional assumptions.

The third way of identification and achieving the
√

n convergence rate is via the

special regressor method, which is proposed by Lewbel (1998, 2000). With additional

assumptions on the joint distribution of the observables and unobservables based

on one special regressor, we can get the identification and the usual parametric
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estimation rate. I use this method to identify a binary response CRC panel data

model in this paper.

I consider a binary response correlated random coefficient panel data model as

follows.

yit = 1(vit + x>itβi + uit > 0), (i = 1, ..., n; t = 1, ..., T ) (3.1)

where 1( · ) is the indicator function, βi is the individual specific random coefficient,

and the superscript > denotes the transpose. For simplicity, I assume there exists

only one regressor which has constant coefficient and this regressor is the special

regressor in model (1.2) to get the model (3.1). The analysis remains similar if I

assume more regressors with constant coefficients. Let βi = β +αi, where E(αi) = 0,

then β is the average slope we are interested in. We assume vit is a special regressor,

which satisfies three conditions that vit is a continuous random variable, independent

of αi and uit conditional on xit, and has a relatively large support, which will be

made more specific below. Here, I normalize the coefficient of vit to be 1. If it is

negative, I can use −vit instead of vit. The advantage of including such a special

regressor is to allow us to transfer the binary response model into a linear moment

condition. Further, I assume that E(uit|xi1, . . . , xiT , αi) = 0, which is the strict

exougeneity condition. Also, I assume there exists a random vector zi satisfying the

condition that E(uit|xit, zi) = 0 and E(αi|xit, zi) = E(αi|zi) ≡ g(zi), for instance

zi = x̄i · = T−1
∑n

t=T xit or zi = (x>i1, . . . , x
>
iT )>. We already saw the identification

and estimation in the linear case. With the help of the special regressor, I can transfer

(3.1) to a linear moment condition, i.e., E[(yit − 1(vit > 0))/ft(vit|xit, zi)|xit, zi] =

x>itβ+x>itE(αi|xit, zi) = x>itβ+x>itg(zi), which is given in the identification proposition

below.

Panel data give us more observations for the same individual over different time

periods. This brings us the advantage of taking consideration of the heterogenous

effects. I can identify the average slope if I have enough time period or additional
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information on zi as I did in the linear case. I assume the data are independent

across i. I give the assumptions on the special regressor.

Assumption C1: The conditional distribution of vit given xit and zi has a continu-

ous conditional density function ft(vit|xit, zi) with respect to the Lebesgue measure

on the real line. Moreover, ft(vit|xit, zi) > 0, if ft(vit|xit, zi) has the real line as the

support, and infvit∈[Lt,Kt] ft(vit|xit, zi)

> 0, if [Lt, Kt] is compact, where [Lt, Kt] is the support of vit conditional on xit and

zi.

Assumption C2: Assume αi and uit are independent of vit conditional on xit and

zi. Let eit = x>it(αi − g(zi)) + uit and denote the conditional distribution of eit

conditioning on (xit, zi) as Feit
(eit|xit, zi) with the support Ωet .

Assumption C3: The conditional distribution of vit conditional on xit and zi has

support [Lt, Kt] for −∞ ≤ Lt < 0 < Kt ≤ +∞, and the support of −x>itβ−x>itg(zi)−
eit is a subset of [Lt, Kt].

In the empirical analysis, the existence of the special regressor depends on the

context. For instance, the age or date of birth can be chosen as the special regressor.

In some situations, it may not be easy to find such a regressor. For more discussions,

see Honoré and Lewbel (2002).

Based on these assumptions, similar as Theorem 1 in Honoré and Lewbel (2002),

I have the following identification proposition.

Proposition 3.1.1. Under assumptions C1, C2, and C3, let

y∗it =





[yit − 1(vit > 0)]/ft(vit|xit, zi) if vit ∈ [Lt, Kt],

0 otherwise.

we have

E(y∗it|xit, zi) = x>itβ + x>itg(zi). (3.2)

The proof of this proposition is given in the Appendix B.
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3.2 Estimation of the Binary Response CRC Panel Model

Based on the identification analysis in section 3.1, I can construct the semi-

parametric estimator of β using kernel methods. Let θ(zi) = β + g(zi). Since

0 = E[αi] = E[g(zi)], we have β = E[θ(zi)]. Once I have an estimator of θ( · ), I can

estimate β using β̂ = n−1
∑n

i=1 θ̂(zi).

From (3.2), I have θ(zi) =
(∑T

t=1 E[xitx
>
it |zi]

)−1 ∑T
t=1 E[xity

∗
it|zi]. Since E[xity

∗
it|zi]

= E[xit(yit − 1(vit > 0))/ft(vit|xit, zi)|zi] and ft(vit|xit, zi) is unknown, I have to es-

timate ft(vit|xit, zi) and I estimate it by

f̂t(vit|xit, zi) =
f̂t(vit, xit, zi)

f̂t(xit, zi)
≡ (nH)−1

∑n
k=1 Kh(vkt − vit, xkt − xit, zk − zi)

(nH̃)−1
∑n

k=1 Kh̃(xkt − xit, zk − zi)
,

where f̂t(vit, xit, zi) = (nH)−1
∑n

k=1 Kh(vkt − vit, xkt − xit, zk − zi), f̂t(xit, zi) =

(nH̃)−1
∑n

k=1 Kh̃(xkt − xit, zk − zi), H = h1 · · ·hd+q+1, H̃ = h2 · · ·hd+q+1, Kh(u) =
∏d+q+1

l=1 k
(

ul

hl

)
, h = (h1, . . . , hd+q+1)

> and h̃ = (h2, . . . , hd+q+1)
>. Then I estimate

E[xity
∗
it|zi] by

Ê[xity
∗
it|zi] =

(nH ′)−1
∑n

j=1 xjt(yjt − 1(vjt > 0))Kh′(zj − zi)1τn,j/f̂t(vjt|xjt, zj)

(nH ′)−1
∑n

j=1 Kh′(zj − zi)
,

where 1τn,j = 1τn(vjt, xjt, zj) = 1{(vjt, xjt, zj) ∈ Ωvxz}, Ωvxz = {a ∈ Svxz : min
l∈{1,...,d+q+1}

|al − bl| ≥ τn, for some b ∈ ∂Svxz}, ∂Svxz denotes the boundary of the compact

set Svxz which is the support of (vjt, xjt, zj), H ′ = h′1 · · ·h′q, h′ = (h′1, . . . , h
′
q),

‖h‖/τn → 0, and τn → 0, as n → ∞. I use 1τn(vjt, xjt, zj) to truncate the data

at the boundary to avoid the singularity problem and the boundary bias.

I can get an estimator of θ(zi) by the local constant kernel method or the local

polynomial method. Due to the complexity of the local polynomial kernel estimator,

I will not discuss it here. However, based on the analysis in the linear case, we know
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the derivation will be similar. The local constant kernel estimator θ̂LC(zi) for zi ∈ Ωz

is given by

θ̂LC(zi) = [
n∑

j=1

T∑
t=1

xjtx
>
jtKh′,ji1τn,j1εn,i]

−1

T∑
t=1

n∑
j=1

xjt
(yjt − 1(vjt > 0))

f̂t(vjt|xjt, zj)
Kh′,ji1τn,j1εn,i,

where 1εn,i = 1εn(zi) = 1{zi ∈ Ωz}, Ωz = {z ∈ Sz : minl∈{1,...,q} |zl − z0,l| ≥
εn for some z0 ∈ ∂Sz}, ∂Sz is the boundary of the compact set Sz which is the

support of zi, ‖h′‖/εn → 0 and εn → 0, as n → ∞. Then the local constant kernel

estimator of β is given by

β̂LC = n−1

n∑
i=1

θ̂LC(zi).

I list some conditions before I present the asymptotic distribution.

Assumption C4: (y>i , v>i , x>i , z>i ) are i.i.d. as (y>1 , v>1 , x>1 , z>1 ), where y>i = (yi1, ...,

yiT ), v>i = (vi1, ..., viT ), x>i = (x>i1, ..., x
>
iT ), x>it = (xit,1, ..., xit,d), z>i = (zi,1, ..., zi,q).

z>i admits a Lebesgue density function fz(z1, ..., zq) with infz∈Sz fz(z) > 0, where Sz

is the support of z>i and is compact. vit is a continuous scalar random variable with

the support [Lt, Kt] on the real line R. (vit, xit, zi) has a compact support Svxz. vit

and xit are strictly stationary across time t, xit and uit have finite fourth moment.

Assumption C5: θ(z), ft(v, x, z), ft(v, x) and fz(z) are ν + 1 times continuously

differentiable, where ν is an integer defined in the next assumption.

Assumption C6: K(z) =
∏q

l=1 k(zl), where k( · ) is a univariate symmetric (around

zero) bounded νth order kernel function with a compact support, i.e.,
∫

k(v)dv = 1,
∫

k(v)vjdv = 0 for j = 1, ..., ν − 1 and µν =
∫

k(v)vνdv 6= 0, ν is a positive even

integer, with
∫ |k(v)|vν+2dv being a finite constant.

Assumption C7: As n →∞, nH ′2/ ln n →∞,
√

nH/ ln n →∞, ‖h′‖2ν ln n/H ′ →
0, ‖h′‖ν/H ′ → 0, n||h′||2ν → 0, n||h||2ν → 0, n||h̃||2ν → 0, εn → 0, τn → 0,

‖h′‖/εn → 0, ‖h‖/τn → 0, εn > τn, ‖h′‖/(εn − τn) → 0, hl → 0 for all l =

1, ..., d + q + 1, h′l → 0 for all l = 1, ..., q.
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Theorem 3.2.1. Under assumptions C1-C7, I have that

√
n(β̂LC − β)

d→ N(0, VLC),

where

VLC = V ar(g(zi)) + T−2V ar
( T∑

t=1

(m−1
i fz(zi)xitξit + m−1

i fz(zi)xit(E[y∗it|vi, xit, zi]

−E[y∗it|xit, zi]))
)
,

and y∗it = [yit − 1(vit > 0)]/ft(vit|xit, zi), if vit ∈ [Lt, Kt], and y∗it = 0, otherwise.

The proof of Theorem 3.2.1 is given in the Appendix B.
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4. A TRUNCATED CRC PANEL DATA MODEL

4.1 Identification of the Truncated CRC Panel Model

In this section, I discuss the identification of the truncated model (1.3) I discussed

in section 1.3 of Chapter 1. My identification result is based on the special regressor

method which is similar as the one used in Khan and Lewbel (2007). The idea

is to assume the existence of a special regressor which satisfies three conditions, i.e.

continuity, conditional independence and relatively large support, which will be more

specific below.

Let β be the population mean of βi, then I have the decomposition βi = β + αi,

where E∗(αi) = 0. Since βi and xit are correlated, I introduce zi to capture this cor-

relation, which satisfies that E∗(uit|xit, zi) = 0 and E∗(αi|xit, zi) = E∗(αi|zi) ≡ g(zi),

where g( · ) is a smooth function. For example I can have zi = x̄i · ≡ T−1
∑T

t=1 xit

or zi = xi = (x>i1, ..., x
>
iT )>. Define εit = x>it(αi − E∗(αi|zi)) + uit. By construction I

have E∗(εit|xit, zi) = 0. Let θ(zi) = β + g(zi). Therefore, I have that

y∗it = vitγ + x>itθ(zi) + εit.

Since E∗(αi) = 0, I have E∗(g(zi)) = E∗(αi) = 0 by the law of iterated expectations.

Hence, I have β = E∗(θ(zi)). The identification of β depends on the identification of

θ( · ).
Recall that I use E∗ to denote the expectation under the underlying untruncated

population distribution, and I use E to denote the expectation under the truncated

distribution. Since I can only partially observe y∗it when y∗it ≥ 0, I have the following

relationship

E[h(yit, xit, vit, zi, εit)1(0 ≤ yit ≤ k)|zi] =
E∗[h(y∗it, xit, vit, zi, εit)1(0 ≤ y∗it ≤ k)|zi]

P ∗(y∗it ≥ 0|zi)
,
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where h( · ) is any function of (yit, xit, vit, zi, εit), k > 0 is a constant, and P ∗(y∗it ≥
0|zi) is the conditional probability of the event {y∗it ≥ 0} under the underlying

untruncated probability.

I give some assumptions before I give the identification result.

Assumption D1: Assume (yit, xit, vit, zi) (i = 1, . . . , n, t = 1, . . . , T ) are drawn from

the model (1.3) with γ 6= 0, which are independent across the individual index i, and

strictly stationary across the time t. The untruncated conditional distribution of vit

conditioning on zi is absolutely continuous with respect to a Lebesgue measure with

conditional density function f ∗(vit|zi), which has support [L,K] for some constants

L and K, −∞ ≤ L < K ≤ ∞ and for any fixed zi.

Assumption D2: Assume that conditional on xit and zi, vit is independent of

αi and uit. Let F ∗
ε (εit|vit, xit, zi) to denote the underlying untruncated conditional

distribution of εit = x>it(αi−g(zi))+uit conditioning on (vit, xit, zi). This assumption

implies that F ∗
ε (εit|vit, xit, zi) = F ∗

ε (εit|xit, zi).

Assumption D3: For any (xit, zi, εit) on the underlying untruncated support of

(xit, zi, εit), we have [1(γ > 0)L + 1(γ < 0)K]γ + x>itθ(zi) + εit < 0, and there exists

a constant k̃ > 0 such that k̃ ≤ [1(γ > 0)K + 1(γ < 0)L]γ + x>itθ(zi) + εit.

Assumption D4: E∗(uit|xit, zi) = 0, and
∑T

t=1 E∗[xitx
>
it |zi] is invertible.

Assumption D1 to D4 give us the conditions for the identification. Assumption D1

requires the special regressor to be a continuous variable. Assumption D2 means the

special regressor is independent of unobserved heterogeneity conditional on the rest

of regressors and the random variable zi we introduce. Assumption D3 requires the

support of the special regressor is relatively large. Assumption D4 is the identification

condition similar to the linear panel data model which implies that T ≥ d, where d

is the dimension of the regressor xit.

Under the assumptions above, I give the identification result for β. I divide

my identification results into three steps. First, given γ I give the theorem on the
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identification of θ( · ). Second, I discuss how to identify γ. In the end, since the law

of iterated expectations imply that β = E∗[θ(zi)], I can identify β once I have the

identification of θ( · ). Let

ỹit =
(yit − vitγ)1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)

E[1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)|zi]
.

Theorem 4.1.1. Let Assumptions D1 to D4 hold. Let k be any constant satisfying

0 < k ≤ k̃. Then

θ(zi) =

(
T∑

t=1

E∗[xitx
>
it |zi]

)−1 T∑
t=1

E[xitỹit|zi]. (4.1)

Denote

ζ(k) =
1

T

T∑
t=1

E[2vit1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)]

E[1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)]
.

I have the following identification theorem for γ.

Theorem 4.1.2. Under Assumptions D1 to D4, and let k and k′ be any constants

satisfying 0 < k′ < k ≤ k̃. I have

γ =
k − k′

ζ(k)− ζ(k′)
. (4.2)

Once I have the identification result of γ and θ( · ), I can identify β by the equality

β = E∗(θ(zi)). In this section, though the observations of yit are not complete, I

assume that I can get the full information on the underlying untruncated population

distribution of (xit, vit, zi). In practice, this can be accomplished by the same data set

which includes complete observations of the covariates other than just the truncated

sample or by an auxiliary data set. This means that f ∗t (vit|xit, zi) and E∗(θ(zi)) can

be estimated from the data.
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4.2 Estimation of the Truncated CRC Panel Model

In this section, I construct our estimator based on the identification results in

section 4.1. Recall that θ(zi) = β + g(zi). Since 0 = E∗[αi] = E∗[g(zi)], we have

β = E∗[θ(zi)]. Once I have an estimator of θ( · ), I can estimate β using β̂ =

(n∗)−1
∑n∗

i=1 θ̂(zi).

First, I construct the estimator for γ. Denote

µt(k, zi) = E[1(0 ≤ yit ≤ k)/f∗(vit|xit, zi)|zi],

µt(k) = E[1(0 ≤ yit ≤ k)/f∗(vit|xit, zi)].

From (4.1.2), I have to give the estimator for µt(k, zi). Since f ∗t (vit|xit, zi) is unknown,

I have to estimate f ∗t (vit|xit, zi) and I estimate it by

f̂ ∗t (vit|xit, zi) =
f̂ ∗t (vit, xit, zi)

f̂ ∗t (xit, zi)
≡ (n∗H)−1

∑n∗
k=1 Kh(v

∗
kt − vit, x

∗
kt − xit, z

∗
k − zi)

(n∗H̃)−1
∑n∗

k=1 Kh̃(x
∗
kt − xit, z∗k − zi)

,

where f̂ ∗t (vit, xit, zi) = (n∗H)−1
∑n∗

k=1 Kh(v
∗
kt − vit, x

∗
kt − xit, z

∗
k − zi), f̂ ∗t (xit, zi) =

(n∗H̃)−1
∑n∗

k=1 Kh̃(x
∗
kt − xit, z

∗
k − zi), H = h1 · · ·hd+q+1, H̃ = h2 · · ·hd+q+1, Kh(u) =

∏d+q+1
l=1 k

(
ul

hl

)
, h = (h1, . . . , hd+q+1)

>, and h̃ = (h2, . . . , hd+q+1)
>. Then I give the

estimator for µt(k, zi) and µt(k) as

µ̂t(k, zi) =
(nH ′)−1

∑n
j=1 1(0 ≤ yjt ≤ k)Kh′(zj − zi)/f̂

∗
t (vjt|xjt, zj)

(nH ′)−1
∑n

j=1 Kh′(zj − zi)
,

µ̂t(k) =
1

n

n∑
i=1

1(0 ≤ yit ≤ k)

f̂ ∗t (vit|xit, zi)
1τn,i,

and the estimator for ζ(k) can be constructed as

ζ̂(k) =
1

T

T∑
t=1

µ̂t(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f̂ ∗t (vit|xit, zi)
1τn,i,
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where 1τn,i = 1τn(vit, xit, zi) = 1{(vit, xit, zi) ∈ Ωvxz}, Ωvxz = {a ∈ Svxz : min
l∈{1,...,d+q+1}

|al − bl| ≥ τn, for some b ∈ ∂Svxz}, ∂Svxz denotes the boundary of the compact set

Svxz which is the support of (vit, xit, zi), H ′ = h′1 · · ·h′q, h′ = (h′1, . . . , h
′
q), ‖h‖/τn → 0,

and τn → 0, as n →∞. I use 1τn(vit, xit, zi) to truncate the data at the boundary to

avoid the singularity problem and the boundary bias. Hence, our estimator of γ is

γ̂ =
k − k′

ζ̂(k)− ζ̂(k′)
. (4.3)

From (4.1), I have θ(zi) =
(∑T

t=1 E∗[xitx
>
it |zi]

)−1 ∑T
t=1 E[xitỹit|zi]. Since

E[xitỹit|zi] = E[xit(yit − vitγ)1(0 ≤ yit ≤ k)/µt(k, zi)f
∗
t (vit|xit, zi)|zi],

I estimate E[xitỹit|zi] by

Ê[xitỹit|zi] =
(nH ′)−1

∑n
j=1 xjt(yjt − vjtγ̂)1(0 ≤ yjt ≤ k)Kh′,ji1τn,j/µ̂t(k, zj)f̂

∗
t,v|xz,j

(nH ′)−1
∑n

j=1 Kh′,ji
,

where f ∗t,v|xz,j = f ∗t (vjt|xjt, zj), and 1τn,j = 1τn(vjt, xjt, zj) = 1{(vjt, xjt, zj) ∈ Ωvxz}.
I use the trimming function 1τn(vjt, xjt, zj) to trim the data at the boundary to avoid

the singularity problem and the boundary bias.

I can get an estimator of θ(zi) by the local constant kernel method or the local

polynomial method. Due to the complexity of the local polynomial kernel estimator,

I will not discuss it here. However, based on the analysis in the linear case, I know

the derivation will be similar. The local constant kernel estimator θ̂LC(zi) for zi ∈ Ωz

is given by

θ̂LC(zi) = [
1

n∗

n∗∑
j=1

T∑
t=1

x∗jt(x
∗
jt)

>Kh′,ji1τn,j1εn,i]
−1 1

n

T∑
t=1

n∑
j=1

xjt
(yjt − vjtγ̂)

f̂ ∗t (vjt|xjt, zj)

×1(0 ≤ yjt ≤ k))

µ̂t(k, zj)
Kh′,ji1τn,j1εn,i,



www.manaraa.com

33

where 1εn,i = 1εn(zi) = 1{zi ∈ Ωz}, Ωz = {z ∈ Sz : minl∈{1,...,q} |zl − z0,l| ≥
εn for some z0 ∈ ∂Sz}, ∂Sz is the boundary of the compact set Sz which is the

support of zi, ‖h′‖/εn → 0 and εn → 0, as n → ∞. Then the local constant kernel

estimator of β is given by

β̂LC = (n∗)−1

n∗∑
i=1

θ̂LC(zi). (4.4)

I list some conditions before I present the asymptotic distribution.

Assumption D5: (y>i , v>i , x>i , z>i ) are i.i.d. as (y>1 , v>1 , x>1 , z>1 ), where y>i = (yi1, ...,

yiT ), v>i = (vi1, ..., viT ), x>i = (x>i1, ..., x
>
iT ), x>it = (xit,1, ..., xit,d), z>i = (zi,1, ..., zi,q).

z>i admits a Lebesgue density function fz(z1, ..., zq) with infz∈Sz fz(z) > 0, where Sz

is the support of z>i and is compact. vit is a continuous scalar random variable with

the support [Lt, Kt] on the real line R. (vit, xit, zi) has a compact support Svxz. vit

and xit are strictly stationary across time t and uit has finite fourth moment.

Assumption D6: θ(z), ft(v, x, z), ft(v, x) and fz(z) are ν + 1 times continuously

differentiable, where ν is an integer defined in the next assumption.

Assumption D7: K(z) =
∏q

l=1 k(zl), where k( · ) is a univariate symmetric (around

zero) bounded νth order kernel function with a compact support, i.e.,
∫

k(v)dv = 1,
∫

k(v)vjdv = 0 for j = 1, ..., ν − 1 and µν =
∫

k(v)vνdv 6= 0, ν is a positive even

integer, with
∫ |k(v)|vν+2dv being a finite constant.

Assumption D8: As n → ∞, n/n∗ → c, 0 ≤ c < ∞, n∗H ′2/ ln n∗ → ∞,
√

n∗H/ ln n∗ →∞, ‖h′‖2ν ln n∗/H ′ → 0, ‖h′‖ν/H ′ → 0, n∗||h′||2ν → 0, n∗||h||2ν → 0,

n∗||h̃||2ν → 0, εn → 0, τn → 0, ‖h′‖/εn → 0, ‖h‖/τn → 0, εn > τn, ‖h′‖/(εn − τn) →
0, hl → 0 for all l = 1, ..., d + q + 1, h′l → 0 for all l = 1, ..., q.

Then I have the following asymptotic theorem.

Theorem 4.2.1. Under assumptions D1-D8, I have that
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(i)
√

n(γ̂ − γ)
d→ N(0, Vγ), where Vγ = E[ψt(k)2],

ψt(k) =
γ2

k − k′

[ 1

T

T∑
t=1

(
µt(k)−1ϕk(k)− φt(k)µt(k)−2ηt(k) + µt(k

′)−1ϕt(k
′)

−φt(k
′)µt(k

′)−2ηt(k
′)
)]

,

ϕt(k) =
2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
− ηt(k)

−cE[
2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,vxz,i

f ∗t,vxz,i

|vit = v∗it, xit = x∗it, zi = z∗i ]

+cE[
2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,xz,i

f ∗t,xz,i

|xit = x∗it, zi = z∗i ],

φt(k) =
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
− µt(k)

−cE[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,vxz,i

f ∗t,vxz,i

|vit = v∗it, xit = x∗it, zi = z∗i ]

+cE[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,xz,i

f ∗t,xz,i

|xit = x∗it, zi = z∗i ],

ηt(k) = E[2vit1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)];

(ii)
√

n∗(β̂LC − β)
d→ N(0, VLC), where

VLC = E∗(g(z∗i ))
2 + E∗

(
T−1

T∑
t=1

[
m−1

i fz(z
∗
i )xitξit

+m−1
i f ∗z (z∗i )x

∗
it

(
E[ỹit|vi = v∗i , xit = x∗it, zi = z∗i ]

−E[ỹit|xit = x∗it, zi = z∗i ]
)

−m−1
i E∗[xitx

>
it |zi = z∗i ]θifz(z

∗
i )φt(k, z∗i )

−m−1
i fz(z

∗
i )

(
1

2γ2
(k2E[xit|zi = z∗i ]− kE[xitx

>
it |zi = z∗i ]θ(z

∗
i ))

)

× ψt(k)

µt(k, z∗i )

])2

,

φt(k, z∗i ) =
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
− µt(k, z∗i )
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−cE[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,vxz,i

f ∗t,vxz,i

|vit = v∗it, xit = x∗it, zi = z∗i ]

+cE[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,xz,i

f ∗t,xz,i

|xit = x∗it, zi = z∗i ],

ξit = ỹit − E(ỹit|xit, zi), and ỹit = [(yit − vitγ)1(0 ≤ yit ≤ k)]/ft(vit|xit, zi), if vit ∈
[Lt, Kt], and y∗it = 0, otherwise.

The proof of Theorem 4.2.1 is given in the Appendix C.
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5. MONTE CARLO SIMULATIONS AND EMPIRICAL APPLICATION

5.1 Monte Carlo Simulation Results

In this section, I conduct extensive simulations to examine the finite sample

performance of different estimators including semiparametric estimators I proposed

in sections 2.2 and 3.2.

5.1.1 Linear CRC Panel Data Models

In this subsection, I consider a simple linear panel data model

yit = β0i + xitβ1i + uit, (i = 1, ..., n; t = 1, ..., T ) (5.1)

where xit is a scalar random variable, β0i = β0 + α0i, β1i = β1 + α1i, α0i is i.i.d. with

(0, σ2
0), α1i is i.i.d. with (0, σ2

1), and uit is i.i.d. with (0, σ2
u) and is independent with

(xit, αi). n = 100, 200, 400 and T = 3. I report the estimated mean squared error

(MSE) computed by

MSE(β̂s) =
1

nr

nr∑
j=1

[
β̂s,j − βs

]2

, for s = 0, 1,

where β̂ is one of five estimators, β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2, which are defined

below, β̂s,j is the value of β̂s in the jth simulation replication, nr = 1, 000 is the

number of replications.

I will compare the following five estimators:

(i) The OLS estimator of regressing yit on (1, xit), i.e., β̂OLS is from the linear

regression

yit = β0 + xitβ1 + uit.



www.manaraa.com

37

Let x̃it = (1, xit)
>, then

β̂OLS = (
n∑

i=1

T∑
t=1

x̃itx̃
>
it)
−1

n∑
i=1

T∑
t=1

x̃ityit.

(ii) The fixed-effects estimator β̂FE,

β̂FE =

∑n
i=1

∑T
t=1(xit − x̄i · )(yit − ȳi · )∑n

i=1

∑T
t=1(xit − x̄i · )2

,

where x̄i · = 1
T

∑T
t=1 xit and ȳi · = 1

T

∑T
t=1 yit. We can see that the fixed-effects

estimator cannot estimate β0. I only report its estimation results for β1.

(iii) I estimate βi using each individual’s data, i.e.,

β̂i,OLS = [
T∑

t=1

x̃itx̃
>
it ]
−1

T∑
t=1

x̃ityit.

Then I average β̂i,OLS to obtain the group mean estimator β̂GM as defined in (2.10).

(iv) If we let zi = x̄i · , where x̄i · = 1
T

∑T
t=1 xit, then I can get the semiparametric

estimator β̂Semi,1. That is, β̂Semi,1 is the average of the varying coefficient estimator

θ̂V C,1 of the following varying coefficient model

yit = θ0(zi) + xitθ1(zi) + uit.

β̂Semi,1 = 1
n

∑n
i=1 θ̂V C,1(x̄i · ), where

θ̂V C,1(x̄i · ) = (
n∑

j=1

T∑
t=1

x̃jtx̃
>
jtKh,xj · xi · 1εn(x̄i · ))−1

n∑
j=1

T∑
t=1

x̃jtyjtKh,xj · xi · 1εn(x̄i · ),

where Kh,xj · xi · = Kh(x̄j · − x̄i · ), K( · ) is a kernel function and h is the smoothing

parameter.
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(v) If I let zi = xi = (x>i1, ..., x
>
iT )>, then I can get the semiparametric estimator

β̂Semi,2. That is, β̂Semi,2 is the average of the varying coefficient estimator θ̂V C,2 of

the following varying coefficient model

yit = θ0(zi) + xitθ1(zi) + uit.

β̂Semi,2 = 1
n

∑n
i=1 θ̂V C,2(xi), where

θ̂V C,2(zi) = (
n∑

j=1

T∑
t=1

x̃jtx̃
>
jtKh(zj − zi)1εn(xi))

−1

n∑
j=1

T∑
t=1

x̃jtyjtKh(zj − zi)1εn(xi),

where K( · ) is a multivariate kernel function and h is a vector of smoothing param-

eters.

Below I report the result of a small simulation study. I generate yit by

yit = β0i + xitβ1i + uit, (i = 1, ..., n; t = 1, ..., T ; T = 3)

where β0i = β0 + α0i, β1i = β1 + α1i, β0 = 1, β1 = 1, xit is i.i.d. with Gamma(1, 1),

and uit is i.i.d. with N(0, 1). α0i and α1i are generated in the following ways, where

α0i = v0i − E(v0i) and α1i = v1i − E(v1i).

DGP1 : v0i = x̄i · + η0i, and v1i = x̄i · + η1i,

DGP2 : v0i = (x̄i · − 1)4 + η0i, and v1i = (x̄i · − 1)2 + ln(x̄i · + 1) + η1i,

DGP3 : v0i = (x̄i · − 1)4 + η0i, and v1i = sin(3x̄i · ) + η1i,

DGP4 : v0i = (x̄i · − 1)4 + η0i, and v1i = (x2
i1 + x2

i2 + x2
i3)/9 + η1i,

where x̄i · = T−1
∑T

t=1 xit, η0i and η1i are i.i.d. with Uniform[−1, 1].

In both DGP1 to DGP4 above, α0i and α1i are correlated with xit.
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The simulation results are reported in Table 5.1, Table 5.2, Table 5.3 and Table

5.4, and the results confirm our theoretical analysis in the paper. I can see that in

all of these tables, β̂OLS and β̂FE are not consistent.

Table 5.1
MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP1

MSE(β̂0)

n β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 0.1727 n/a 0.0511 0.0193 0.0239
200 0.1695 n/a 0.0252 0.0103 0.0131
400 0.1691 n/a 0.0170 0.0056 0.0079

MSE(β̂1)

β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 1.7706 0.1100 2.2231 0.1739 0.2532
200 1.7876 0.0788 0.6199 0.1052 0.1596
400 1.7740 0.0619 0.6050 0.0602 0.0981

Table 5.2
MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP2

MSE(β̂0)

n β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 2.6718 n/a 0.2425 0.2012 0.2120
200 2.5887 n/a 0.1229 0.1049 0.1102
400 2.4841 n/a 0.0768 0.0632 0.0664

MSE(β̂1)

β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 34.9186 1.1697 2.2223 0.0973 0.1843
200 32.0093 1.0391 0.6196 0.0603 0.1166
400 29.3801 1.0430 0.6048 0.0348 0.0692

From Table 5.1 we observe the followings: β̂Semi,1, β̂Semi,2 have the smaller esti-

mation MSE than β̂GM . The GM estimator has the large estimation MSE because

of the short panel of T = 3 so that each individual estimator has large variance.
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Though averaging over individuals makes it a consistent estimator, its finite sample

MSE is still large.

The simulation results for DGP2 is given in Table 5.2. Note that for DGP2,

β̂Semi,1 performs the best, followed by β̂Semi,2, and with β̂GM far behind.

Table 5.3
MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP3

MSE(β̂0)

n β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 1.3804 n/a 0.2425 0.2032 0.2142
200 1.3286 n/a 0.1229 0.1057 0.1116
400 1.2416 n/a 0.0768 0.0635 0.0673

MSE(β̂1)

β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 17.3218 0.2184 2.2223 0.1251 0.2007
200 14.9118 0.1826 0.6196 0.0790 0.1281
400 12.7015 0.1630 0.6048 0.0453 0.0768

From Table 5.3 we observe that β̂Semi,1 has the smallest estimation MSE, followed

by β̂Semi,2 and β̂GM .

Table 5.4
MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP4

MSE(β̂0)

n β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 2.7451 n/a 0.2425 0.2105 0.2115
200 2.6751 n/a 0.1229 0.1125 0.1098
400 2.6186 n/a 0.0768 0.0701 0.0662

MSE(β̂1)

β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 36.0380 2.0803 2.2334 0.1287 0.1834
200 33.2559 1.8795 0.6224 0.0691 0.1080
400 31.2719 1.9394 0.6077 0.0394 0.0631
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Table 5.4 reports simulation results for DGP4, we can see that β̂Semi,1 and β̂Semi,2

are consistent.

The simulation results reported in this section show that our proposed semipara-

metric estimators β̂Semi,1 and β̂Semi,2 perform well.

5.1.2 Binary Response CRC Models

In this section, I conduct simulations for binary response CRC models. I compare

the estimators as in section 5.1.1 with yit substituted by
(yjt−1(vjt>0))

f̂t(vjt|xjt,zj)
. I generate yit

by

yit = 1(vit + β0i + xitβ1i + uit > 0), (i = 1, ..., n; t = 1, ..., T ; T = 3)

where β0i = β0+α0i, β1i = β1+α1i, β0 = 0.5, β1 = 1, xit is i.i.d. with Gamma(1, 1/3),

and uit is i.i.d. with Uniform[−0.5, 0.5]. α0i and α1i are generated in the following

ways, where α0i = w0i − E(w0i) and α1i = w1i − E(w1i).

DGP5 : vit is independent of α0i, α1i and uit, and distributed as Uniform[−4, 4],

w0i = (x̄i · − 1)4 + η0i, and w1i = (x̄i · − 1)2 + ln(x̄i · + 1) + η1i,

DGP6 : vit is independent of α0i, α1i and uit, and distributed as Uniform[−4, 4],

w0i = (x̄i · − 1)4 + η0i, and w1i = sin(3x̄i · ) + η1i,

DGP7 : vit = x̄2
i · + wit, where wit ∼ Uniform[−4, 4],

w0i = (x̄i · − 1)4 + η0i, and w1i = (x̄i · − 1)2 + ln(x̄i · + 1) + η1i,

DGP8 : vit = x̄2
i · + wit, where wit ∼ Uniform[−4, 4],

w0i = (x̄i · − 1)4 + η0i, and w1i = sin(3x̄i · ) + η1i,

where x̄i · = T−1
∑T

t=1 xit, η0i and η1i are i.i.d. with Uniform[−0.5, 0.5].
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Table 5.5
MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP5

MSE(β̂0)

n β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 0.0231 n/a 0.7049 0.0288 0.0474
200 0.0133 n/a 0.1123 0.0134 0.0298
400 0.0105 n/a 0.0528 0.0070 0.0197

MSE(β̂1)

β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 0.6119 0.4586 15.2617 0.4788 0.6449
200 0.5513 0.3767 3.5648 0.2706 0.3271
400 0.5156 0.3262 1.7518 0.1812 0.2069

Table 5.6
MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP6

MSE(β̂0)

n β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 0.0225 n/a 0.7078 0.0294 0.0489
200 0.0114 n/a 0.1019 0.0135 0.0302
400 0.0086 n/a 0.0539 0.0072 0.0195

MSE(β̂1)

β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 0.4491 0.3688 14.2614 0.4306 0.6242
200 0.3794 0.2820 3.0915 0.2419 0.3166
400 0.3413 0.2341 1.6976 0.1602 0.2064
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Table 5.7
MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP7

MSE(β̂0)

n β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 0.0230 n/a 0.7132 0.0289 0.0461
200 0.0144 n/a 0.1083 0.0139 0.0294
400 0.0112 n/a 0.0496 0.0072 0.0192

MSE(β̂1)

β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 0.6083 0.4543 15.7561 0.4661 0.6270
200 0.5699 0.3879 3.7572 0.2681 0.3204
400 0.5269 0.3356 1.7287 0.1821 0.2013

Table 5.8
MSE of β̂OLS, β̂FE, β̂GM , β̂Semi,1, β̂Semi,2 for DGP8

MSE(β̂0)

n β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 0.0220 n/a 0.7349 0.0292 0.0477
200 0.0125 n/a 0.0970 0.0144 0.0306
400 0.0088 n/a 0.0524 0.0073 0.0193

MSE(β̂1)

β̂OLS β̂FE β̂GM β̂Semi,1 β̂Semi,2

100 0.4434 0.3668 14.7899 0.4226 0.5975
200 0.3898 0.2946 3.2012 0.2448 0.3160
400 0.3385 0.2319 1.6847 0.1571 0.1958
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The simulation results are reported in Table 5.5, Table 5.6, Table 5.7 and Table

5.8. We can see that the semiparametric estimators we proposed perform well.

5.1.3 A Truncated CRC Panel Data Model

In this section, I conduct simulations for the truncated CRC panel data model.

I generate yit by

y∗it = 1(γvit + β0i + xitβ1i + uit > 0), (i = 1, ..., n; t = 1, ..., T ; T = 3)

yit = y∗it|y∗it ≥ 0,

where β0i = β0 + α0i, β1i = β1 + α1i, β0 = 0.5, β1 = 1, γ = 0.5, xit is i.i.d. with

Gamma(1, 1/3), and uit is i.i.d. with Uniform[−0.5, 0.5]. α0i and α1i are generated

in the following ways, where α0i = w0i − E(w0i) and α1i = w1i − E(w1i).

DGP9 : vit is independent of α0i, α1i and uit, and distributed as Uniform[−4, 4],

w0i = (x̄i · − 1)4 + η0i, and w1i = (x̄i · − 1)2 + ln(x̄i · + 1) + η1i,

DGP10 : vit is independent of α0i, α1i and uit, and distributed as Uniform[−4, 4],

w0i = (x̄i · − 1)4 + η0i, and w1i = sin(3x̄i · ) + η1i,

DGP11 : vit = x̄2
i · + wit, where wit ∼ Uniform[−4, 4],

w0i = (x̄i · − 1)4 + η0i, and w1i = (x̄i · − 1)2 + ln(x̄i · + 1) + η1i,

DGP12 : vit = x̄2
i · + wit, where wit ∼ Uniform[−4, 4],

w0i = (x̄i · − 1)4 + η0i, and w1i = sin(3x̄i · ) + η1i,

where x̄i · = T−1
∑T

t=1 xit, η0i and η1i are i.i.d. with Uniform[−0.5, 0.5]. I use

zi = x̄i · , k = 0.5 and k′ = 2 for estimators in (4.3) and (4.4).

The simulation results are reported in Table 5.9, Table 5.10, Table 5.11 and Table

5.12. We can see that the semiparametric estimators we proposed perform well.
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Table 5.9
MSE of γ̂, β̂0, β̂1 for DGP9

n MSE(γ̂) MSE(β̂0) MSE(β̂1)
100 0.0029 0.0330 0.8655
200 0.0013 0.0164 0.6551
400 0.0006 0.0099 0.5321

Table 5.10
MSE of γ̂, β̂0, β̂1 for DGP10

n MSE(γ̂) MSE(β̂0) MSE(β̂1)
100 0.0030 0.0334 0.8101
200 0.0014 0.0191 0.5537
400 0.0007 0.0110 0.3952

Table 5.11
MSE of γ̂,, β̂0, β̂1 for DGP11

n MSE(γ̂) MSE(β̂0) MSE(β̂1)
100 0.0029 0.0307 0.8698
200 0.0013 0.0162 0.6612
400 0.0006 0.0097 0.5236

Table 5.12
MSE of γ̂, β̂0, β̂1 for DGP12

n MSE(γ̂) MSE(β̂0) MSE(β̂1)
100 0.0031 0.0335 0.8373
200 0.0014 0.0182 0.5735
400 0.0007 0.0101 0.4084
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5.2 An Empirical Application

In this section, I use the linear CRC panel data model to reexamine the return

of on-the-job training. I consider the following simple wage equation

log(wageit) = β0i+β1it+β2itenureit+β3ieducit+β4iunionit+β5itrainingit+uit. (5.2)

Here, β0i is the fixed effects term which captures the time invariant characteristics

of individuals, for instance, gender. I include a time trend to capture the individ-

ual wage growth. tenureit denotes weeks an individual has worked for the current

employer, which describes the working experience. I use eduit to denote years of

schooling, unionit to denote the union status of the individual, which is also an im-

portant factor for the wage, and trainingit to denote accumulated hours spent on the

job training until time t. Then β5i is the return from joining the union, and β6i is the

rate of return from the job training. Though some people took the job after finished

the education, the years of schooling occasionally change for some other people, so I

include an education term in the equation.

We know that people make decisions on whether to join the union depending on

how much benefit they can get from this activity. Thus, there exists a correlation

between unionit and β5i. From the theory of human capital, we know that the

marginal return of the job training is diminishing as the level of the training increases.

Therefore, there is a correlation between trainingit and β6i. These make (5.2) a linear

CRC panel data model. Also, random coefficients are used to capture unobserved

heterogeneity.

I use 1979 cohort data from the National Longitudinal Survey of Youth (NLSY).

The 1979 cohort data in NLSY is a data set of 12,686 individuals who were aged 14

to 21 in 1979, and interviewed every year from 1979 to 1994, and every two years

after 1994. In 1988 and after, individuals were asked about the spell of their job

training, i.e., weeks they spent on the training since last interview and hours per
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week spent on the training. I use the product of the weeks and hours to calculate

the increment of hours spent on the job training since the last interview. The data

also include other information about individuals, such as hourly wage, tenure, union

status, years of schooling, etc.

For the estimation of (5.2), I take first difference and get that

log(wageit)− log(wagei,t−1) = β1i + β2i∆tenureit + β3i∆educit + β4i∆unionit

+β5i∆trainingit + ∆uit, (5.3)

where ∆Ait = Ait − Ai,t−1. The reason I do the first difference is that I can only

observe the increment of hours spent on the job training since the last period, not

the accumulated hours. Also, it helps me to get rid of the fixed effects term β0i.

Then I can use the OLS approach to estimate β̄1i, β̄2i, β̄3i, β̄4i, β̄5i and β̄6i which are

population means of the random coefficients in (5.3), which is equivalent to the first

difference estimators for (5.2). I also use the nonparametric method I proposed in

(2.15) to estimate (5.3). I report the result in the following table.

Table 5.13
Estimation results of (5.3) by OLS and nonparametric methods

Variables First difference estimates Nonparametric estimates

Time trend 5.37% 5.38%

Tenure (weeks) 0.025% 0.017%

Education (years) 2.66% 4.46%

Union 11.47% 16.24%

Job training (per 60 hours) 0.42% 3.16%

Time range: 1988 - 2008 (14 interviews)

Sample size: 3287

I use the data of 3287 individuals who took job training during 1988 to 2008.

From table 5.13, we can see that the first difference estimators underestimate the
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rate of return from the job training and joining the union. This is consistent with

the discussions in the literature, e.g. Frazis and Loewenstein (2005). Using my

nonparametric method for correcting the correlations, I get the return of joining the

union is 1.4 times as much as the one estimated by the first difference method. Also,

the estimate of the return from job training based on my method is 7 times as much

as the one estimated by the first difference method.

From the estimation results, we can see that the yearly increase rate of wage is

5.38%. The increase rate of tenure is 0.017% per week. The reason this is small

is that for most people who continuously work for a same employer, the tenure is

proportional to the difference of time. So part of the increase from tenure is absorbed

in the yearly increment. Moreover, we can see that there is no obvious nonlinear effect

of the tenure due to the similar reason as tenure. The rate of return of education

is 4.46% for one year more education. Also, I find that the return from joining the

union is 16.24%, and the rate of return from job training is 3.16% per 60 hours

training. The result for the rate of return from job training is close to the result in

Frazis and Loewenstein (2005) which is 3-4 percent for 60 hours of formal training,

the median positive amount of training.

Table 5.14
Estimation results of (5.2) with nonlinear functional form in training

Variables First difference estimates

Time trend 5.52%

Tenure (weeks) 0.025%

Education (years) 2.69%

Union 11.41%

Job training (per 60 hours) 2.79%

Frazis and Loewenstein (2005) proposed to use an optimal functional form which

is (T 0.35 − 1)/0.35 for NLSY 79 data for the training variable and use the fixed

effects estimators. I use the functional form they proposed and the first difference
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estimation to estimate the data I gathered, and the results are reported in Table 5.14.

We can see that the estimation result is similar as the one from the nonparametric

estimation I proposed.

Overall, the estimator I proposed can make a difference compared with the usual

first difference estimation. The magnitude of these values are very reasonable.
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6. CONCLUSION

In this dissertation, I discuss the identification and estimation of linear CRC

panel data models, binary response CRC panel data models, and a truncated CRC

panel data model. I use the linear CRC panel data model to show how I deal with the

general correlation between random coefficients and regressors in the CRC model.

Also, the linear CRC panel data model has usefulness in its own for the analysis of the

average treatment effect. Further, I extend the idea to the binary choice CRC panel

data model. The identification of the binary choice model is different from the linear

model. I base my identification result on the special regressor method. Moreover,

I construct the
√

n consistent asymptotically normal semiparametric estimators for

both models. Further, I did simulations and an empirical application to show the

advantage of our estimators.

There are some extensions I am considering. In the example given in section

2.1, the regressor is a discrete variable but I mainly discuss the identification and

estimation results for continuous variables in this paper. Though, similar discussions

can be made by using kernel smoothing method for discrete variables as in Li and

Racine (2007), I leave the rigorous derivations for future research. In addition, it is

desirable to construct tests for CRC panel data models. I also leave this for further

research.



www.manaraa.com

51

REFERENCES

Angrist, J.D., 2001. Estimation of limited dependent variable models with dummy

endogenous regressors: simple strategies for empirical practice (with discussion).

Journal of Business and Economics Statistics 19, 2-28.

Arellano, M., 2003. Panel Data Econometrics. Oxford University Press, New York.

Arellano, M., Bonhomme, S., 2012. Identifying distributional characteristics in ran-

dom coefficient panel data models. Review of Economic Studies (forthcoming).

Berry, S., Levinsohn, J., Pakes, A., 1995. Automobile prices in market equilibrium.

Econometrica 63, 841-890.

Bonhomme, S., 2012. Functional differencing. Econometrica (forthcoming).

Browning, M., Carro, J., 2007. Heterogeneity and microeconometrics modeling. In:

Blundell, R., Newey, W., Persson, T. (Eds.), Advances in Economics and Econo-

metrics: Theory and Applications III. Cambridge University Press, Cambridge,

pp. 47-74.

Chamberlain, G., 2010. Binary response models for panel data: identification and

information. Econometrica 78, 159-168.

Chernozhukov, V., Fernández-Val, I., Newey, W.K., 2009. Quantile and average

effects in nonseparable panel models. Working Paper. MIT, Cambridge.

Dong, Y., Lewbel, A., 2011. Simple estimators for binary choice models with en-

dogenous regressors. Working Paper. Boston College, Boston.

Evdokimov, K., 2010. Identification and estimation of a nonparametric panel data

model with unobserved heterogeneity. Working Paper. Princeton University,

Princeton.

Fox, J.T., Gandhi, A., 2010. Nonparametric identification and estimation of ran-

dom coefficients in nonlinear economic models. Working Paper. University of

Chicago, Chicago.



www.manaraa.com

52

Frazis, H., Loewenstein, M.A., 2005. Reexamining the returns to training: functional

form, magnitude, and interpretation. Journal of Human Resources 40, 453-476.

Graham, B.S., Powell, J.L., 2012. Identification and estimation of average partial

effects in ‘irregular’ correlated random coefficient panel data models. Economet-

rica (forthcoming).

Hahn, J., 2001. Comment: binary regressors in nonlinear panel-data models with

fixed effects. Journal of Business and Economic Statistics 19, 16-17.

Hansen, B.E., 2008. Uniform convergence rates for kernel estimation with dependent

data. Econometric Theory 24, 726-748.
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Honoré, B.E., 1992. Trimmed lad and least squares estimation of truncated and

censored regression models with fixed effects. Econometrica 60, 533-565.



www.manaraa.com

53
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APPENDIX A

Proof of Theorem 2.2.1: I first consider the local constant estimation method.

For any z ∈ Ωz, we have

θ̂LC(z) =

[
n∑

j=1

T∑
s=1

xjsx
>
jsKh,zjz1εn(z)

]−1 n∑
j=1

T∑
s=1

xjsyjsKh,zjz1εn(z)

= θ(z) +

[
n∑

j=1

T∑
s=1

xjsx
>
jsKh,zjz1εn(z)

]−1 n∑
j=1

T∑
s=1

xjs[x
>
js(θ(zj)− θ(z)) + εjs]

×Kh,zjz1εn(z)

= θ(z) + An1(z)−1 [An2(z) + An3(z)] , (A.1)

where

An1(z) =
1

nTH

n∑
j=1

T∑
s=1

xjsx
>
jsKh,zjz1εn(z),

An2(z) =
1

nTH

n∑
j=1

T∑
s=1

xjsx
>
js(θ(zj)− θ(z))Kh,zjz1εn(z),

An3(z) =
1

nTH

n∑
j=1

T∑
s=1

xjsεjsKh,zjz1εn(z),

with H = h1 · · ·hq and Kh,zjz = K((zj − z)/h) =
∏q

s=1 k((zjs − zs)/hs).
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Using (A.1) we have

β̂LC =
1

n

n∑
i=1

θ̂LC(zi)

=
1

n

n∑
i=1

θ(zi) +
1

n

n∑
i=1

An1(zi)
−1 [An2(zi) + An3(zi)] .

By Lemma A.1.1 we have uniformly in z ∈ Ωz,

An1(z)−1 = m(z)−1 + Op(||h||ν + (ln n/(nH))1/2),

where m(z) = T−1
∑T

s=1 E[xjsx
>
js|zj = z]f(z).

So we have

1

n

n∑
i=1

An1(zi)
−1 [An2(zi) + An3(zi)]

=
1

n

n∑
i=1

m(zi)
−1 [An2(zi) + An3(zi)] + ηn

≡ Bn1 + Bn2 + ηn,

where

Bn1 = n−1

n∑
i=1

m(zi)
−1An2(zi),

Bn2 = n−1

n∑
i=1

m(zi)
−1An3(zi),

ηn = Op(||h||ν + (ln n/(nH))1/2)Op(‖An2(zi)‖+ ‖An3(zi)‖).
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Bn1 and Bn2 correspond to ‘bias’ and ‘variance’ terms, respectively.

We first consider Bn1. Note that Bn1 can be written as a second order U-statistic.

Bn1 = n−2n(n− 1)

2

1

n(n− 1)

n∑
i=1

n∑

j 6=i

Hn1,ij ≡ n−2n(n− 1)

2
Un1,

where

Hn1,ij = (TH)−1

T∑
s=1

[m(zi)
−1xjsx

>
js(θj−θi)1εn(zi)+m(zj)

−1xisx
>
is(θi−θj)1εn(zj)]Kh,ji,

Kh,ji = Kh((zj − zi)/h). Using the U-statistic H-decomposition we have

Un1 = E[Hn1,ij] +
2

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

+
2

n(n− 1)

n∑
i=1

n∑
j>i

[Hn1,ij −Hn1,i −Hn1,j + E(Hn1,ij)] ,

where Hn1,i = E[Hn1,ij|wi], wi = (xi, zi) = (xi1, . . . , xiT , zi).

Since ‖h‖/εn → 0 and the kernel function K( · ) has a compact support, the

trimming function 1εn(zi) will ensure that all of the points which have boundary

effects are excluded from our estimated locations. We have that

E[Hn1,ij] = (TH)−1

T∑
s=1

E[m−1
i xjsx

>
js(θj − θi)Kh,ij]

= (TH)−1

T∑
s=1

E[m−1
i E(xjsx

>
js|zj)(θj − θi)Kh,ij]
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= H−1E[m−1
i mjf

−1
j (θj − θi)Kh,ij]

= H−1

∫ ∫
m−1

i fimj(θj − θi)Kh,ijdzidzj

=

∫ ∫
m−1

i fim(zi + hv)(θ(zi + hv)− θi)K(v)dvdzi

= µν

q∑

l=1

∑

k1+k2=ν,k2 6=0

hν
l

k1!k2!

∫
m−1

i fi(
∂k1mi

∂zk1
l

)(
∂k2θi

∂zk2
l

)dzi + O(||h||ν+1)

=

q∑

l=1

hν
l Bl,LC + Op(||h||ν+1),

where Bl,LC = µν

∑
k1+k2=ν,k2 6=0

1
k1!k2!

E

[
m−1

i (∂k1mi

∂z
k1
l

)(∂k2θi

∂z
k2
l

)

]
.

Also, we have

E




(
2

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

)(
2

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

)>


= V ar

[
2

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

]

=
4

n2

n∑
i=1

V ar[Hn1,i − E(Hn1,i)]

=
4

n2

n∑
i=1

E
[
[Hn1,i − E(Hn1,i)][Hn1,i − E(Hn1,i)]

>]

= O(n−1‖h‖2ν),

and

V ar

[
2

n(n− 1)

n∑
i=1

n∑
j>i

[Hn1,ij −Hn1,i −Hn1,j + E(Hn1,ij)]

]
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=
4

n2(n− 1)2

n∑
i=1

n∑
j>i

V ar [Hn1,ij −Hn1,i −Hn1,j + E(Hn1,ij)]

=
4

n2(n− 1)2

n∑
i=1

n∑
j>i

E
[
[Hn1,ij −Hn1,i −Hn1,j + E(Hn1,ij)]

[
Hn1,ij −Hn1,i

−Hn1,j + E(Hn1,ij)
]>]

= O(n−2H−1‖h‖2).

Hence, Bn1 =
∑q

l=1 hν
l Bl,LC + Op(||h||ν+1 + n−1H−1/2‖h‖).

We decompose Bn2 into two terms

Bn2 = Bn2,1 + Bn2,2,

where

Bn2,1 = (n2TH)−1

n∑
i=1

T∑
s=1

m(zi)
−1xisεisK(0)1εn(zi),

Bn2,2 = (n2TH)−1

n∑
i=1

n∑

j 6=i

T∑
s=1

m(zi)
−1xjsεjsKh,ji1εn(zi).

It is easy to see that E[Bn2,1] = 0 and

E[||Bn2,1||2] = (n4H2)−1O(n) = O((n3H2)−1).

Hence, Bn2,1 = Op((n
3/2H)−1).
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Bn2,2 can be written as a second order U-statistic.

Bn2,2 = n−2n(n− 1)

2
Un2,

where Un2 = 1
n(n−1)

∑n
i=1

∑n
j 6=i Hn2,ij, Hn2,ij = (TH)−1

∑T
s=1(m

−1
i xjsεjs1εn(zi) +

m−1
j xisεis1εn(zj))Kh,ij.

Since Un2 has zero mean, its H-decomposition is given by

Un2 = Un2,1 + Un2,2,

where Un2,1 = 2
n

∑n
i=1 Hn2,i and Un2,2 = 2

n(n−1)

∑n
i=1

∑n
j>i [Hn2,ij −Hn2,i −Hn2,j],

Hn2,i = E[Hn2,ij|wi], wi = (xi, αi, zi, ui) = (xi1, . . . , xiT , αi, zi, ui1, . . . , uiT ). It is easy

to show that Un2,1 is the leading term of Un2.

Un2,1 =
1

nTH

n∑
i=1

T∑
s=1

E
[
(m−1

i xjsεjs1εn(zi) + m−1
j xisεis1εn(zj))Kh,ij|wi

]

=
1

nTH

n∑
i=1

T∑
s=1

E
[(

m−1
i xjsx

>
js(αj − E(αj|zj))1εn(zi) + m−1

i xjsujs1εn(zi)

+m−1
j xisx

>
is(αi − E(αi|zi))1εn(zj) + m−1

j xisuis1εn(zj)
)
Kh,ij|wi

]

=
1

nTH

n∑
i=1

T∑
s=1

(
E[m−1

j Kh,ij|wi]xisx
>
is(αi − E(αi|zi))1εn(zi) + uis1εn(zi)

E[m−1
j xisKh,ij|wi]

)

=
1

nT

n∑
i=1

T∑
s=1

(
m−1

i f(zi)xisx
>
is(αi − E(αi|zi)) + uism

−1
i xisf(zi)

)
1εn(zi)

+Op(‖h‖ν+1/
√

n). (A.2)



www.manaraa.com

61

It is easy to evaluate its second moment E[||Un2,2||2] = (n4H2)−1n2O(H) =

O((n2H)−1). Hence, Un2,2 = Op((nH1/2)−1).

Summarizing the above, we have shown that

β̂LC =
1

n

n∑
i=1

θ(zi) + BLC

+
1

nT

n∑
i=1

T∑
s=1

(
m−1

i f(zi)xisx
>
is(αi − E(αi|zi)) + uism

−1
i xisf(zi)

)
1εn(zi)

+Op

(
(nH1/2)−1 + ||h||ν+1 + ((nH1/2)−1 + ||h||ν)(||h||ν + (ln n/(nH))1/2)

)
.

(A.3)

Also, by Cauchy-Schwarz inequality we have that

E‖ 1

nT

n∑
i=1

T∑
s=1

(
m−1

i f(zi)xisx
>
is(αi − E(αi|zi)) + uism

−1
i xisf(zi)

)⊗2
(1− 1εn,i)‖

≤ {E(‖m−1
i f(zi)xisx

>
is(αi − E(αi|zi)) + uism

−1
i xisf(zi)‖2)P (zi ∈ Sz\Ωz)}1/2,

where 1εn,i = 1εn(zi), and A⊗2 denotes AA> for any matrix A. Since the density

function fz(zi) of zi is bounded and the volume of the set that is within a distance

εn of ∂Sz is proportional to εn, we have that P (zi ∈ Sz\Ωz) = O(εn). Hence,

V ar
( 1√

nT

n∑
i=1

T∑
s=1

(
m−1

i f(zi)xisx
>
is(αi − E(αi|zi)) + uism

−1
i xisf(zi)

)
1εn(zi)

)

= V ar

(
1√
nT

n∑
i=1

T∑
s=1

(
m−1

i f(zi)xisx
>
is(αi − E(αi|zi)) + uism

−1
i xisf(zi)

)
)

+ o(1).
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Hence, by noting that β = E[θ(zi)] and letting vi = θ(zi)− β, we have

√
n

(
β̂LC − β −BLC

)

=
1√
n

n∑
i=1

vi +
1√
nT

n∑
i=1

T∑
s=1

(
m−1

i f(zi)xisx
>
is(αi − E(αi|zi)) + uism

−1
i xisf(zi)

)

×1εn,i(zi) + Op(ζn)

d→ N(0, VLC) (A.4)

by the Lindeberg central limit theorm, where

VLC = V ar(vi) + T−2V ar

(
T∑

s=1

(m−1
i f(zi)xisx

>
is(αi − E(αi|zi)) + uism

−1
i xisf(zi))

)

= V ar(θi) + T−2V ar

(
T∑

s=1

m−1
i f(zi)xisx

>
is(αi − E(αi|zi))

)

+T−2V ar

(
T∑

s=1

uism
−1
i xisf(zi)

)

and ζn = (nH)−1/2+(n||h||2ν+2)1/2+(nH)−1/2‖h‖+√n‖h‖2ν+
√

n‖h‖2ν(ln n/(nH))1/2

+ ‖h‖ν(nH)−1/2 + (nH)−1/2(ln n/(nH))1/2 = op(1).

Lemma A.1.1. Define An1(z) = 1
nTH

∑n
j=1

∑T
s=1 xjsx

>
jsKh,zjz, and m(z) = T−1

∑T
s=1

E[xjsx
>
js|zj = z]f(z), where Kh,zjz =

∏q
l=1 k

(
zjl−zl

hl

)
, then under Assumptions A1-

A4,

An1(z)−1 = m(z)−1 + Op

(||h||ν + (ln n)1/2(nH)−1/2
)
,
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uniformly in z ∈ Ωz, where Ωz = {z ∈ Sz : minl∈{1,...,q} |zl − z0,l| ≥ εn for some z0 ∈

∂Sz}, ∂Sz is the boundary of the compact set Sz, εn → 0 and ‖h‖/εn → 0, as n →∞.

Proof: First, we have

E[An1(z)] = m(z) + O (‖h‖ν) , (A.5)

uniformly in z ∈ Ωz. Following similar arguments used in Masry (1996) when deriving

uniform convergence rates for nonparametric kernel estimators, we know that

An1(z)− E[An1(z)] = Op

(
(ln n)1/2

(nH)1/2

)
, (A.6)

uniformly in z ∈ Ωz.

Combining (A.5) and (A.6) we have

An1(z)−m(z) = Op

(
||h||ν + (ln n)1/2 (nH)−1/2

)
, (A.7)

uniformly in z ∈ Ωz.

Using (A.7) we obtain

An1(z)−1 = [m(z) + An1(z)−m(z)]−1

= m(z)−1 −m(z)−1 [An1(z)−m(z)] m(z)−1 + Op

(‖An1(z)−m(z))‖2)

= m(z)−1 + Op

(
||h||ν + (ln n)1/2 (nH)−1/2

)
,
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which completes the proof of Lemma A.1.1.

Proof of Theorem 2.2.2: Now, we consider the local polynomial estimation

method.

The minimization of (2.18) leads to the set of equations

tn,i(z) =
∑

0≤|k|≤p

hkb̂k(z)sn,i+k(z), 0 ≤ |i| ≤ p (A.8)

where

tn,i(z) =
1

nTH

n∑
j=1

T∑
s=1

xjsyjs

(
zi − z

h

)i

Kh,zjz,

sn,i+k(z) =
1

nTH

n∑
j=1

T∑
s=1

xjsx
>
js

(
zi − z

h

)i+k

Kh,zjz.

We put the set of equations (A.8) into a lexicographical order. Let Nr =
(

r+q−1
q−1

)

be the number of distinct q-tuples i with |i| = r. Stacking tn,i(z), |i| = r up into

a column vector according to these Nr q-tuples by a lexicographical order, i.e.,

(0, . . . , 0, r) is the first element and (r, 0, . . . , 0) is the last one. Denote this vec-

tor by τn,r(z). Let τn = (τn,0(z)>, τn,1(z)>, . . . , τn,p(z)>)>. Note that the column

vector τn(z) is of dimension N =
∑p

i=0 Ni × d. Similarly, we can arrange hkb̂k(z),

0 ≤ |k| ≤ p into a N ×1 column vector according to the lexicographical order of k as

δ̂(z) = (δ̂n,0(z)>, δ̂n,1(z)>, . . . , δ̂n,p(z)>)>. Finally, we arrange sn,i+k(z) into a matrix

(Sn,|i|,|k|(z))N×N , where columns are according the lexicographical order of i and rows
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are following the lexicographical order of k. Thus, denote the N × N matrix Sn(z)

by

Sn(z) =




Sn,0,0(z) Sn,0,1(z) · · · Sn,0,p(z)

Sn,1,0(z) Sn,1,1(z) · · · Sn,1,p(z)

...
...

. . .
...

Sn,p,0(z) Sn,p,1(z) · · · Sn,p,p(z)




.

Hence, δ̂(z) = Sn(z)−1τn(z). Let P1 = e>1 ⊗ Id×d, where e1 = (1, 0, . . . , 0)> is a

(
∑p

i=0 Ni) × 1 vector containing the first element as 1 and others as 0, Id×d is the

d× d identity matrix, and ⊗ is the kronecker product. Then θ̂LP (z) = P1δ̂(z).

Using similar arguments in Masry (1996), we can show that

Sn(z) = S(z) + Op

(||h||+ (ln n)1/2(nH)−1/2
)
,

uniformly in z ∈ Ωz, where S(z) = (S|i|,|k|(z))N×N has each element corresponding to

Sn(z), for the corresponding element si+k(z) in S(z), si+k(z) = T−1
∑T

s=1 E[xjsx
>
js|zj

= z]f(z)µi+k, and µi+k =
∫

ui+kK(u)du.

Hence,

Sn(z)−1 = S(z)−1 + Op

(||h||+ (ln n)1/2(nH)−1/2
)
,

uniformly in z ∈ Ωz.
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We can write tn,i(z) as

tn,i(z) =
1

nTH

n∑
j=1

T∑
s=1

xjsyjs

(
zi − z

h

)i

Kh,zjz

=
1

nTH

n∑
j=1

T∑
s=1

xjs(x
>
jsθ(zj) + εjs)

(
zi − z

h

)i

Kh,zjz.

Also, we have that

δ̂(z) = δ(z) + Sn(z)−1(Cn1(z) + Cn2(z)),

where δ(z) is corresponding to δ̂(z) with elements from hkDkθ(z)/k! instead of

hkb̂k(z), Cn1(z) and Cn2 are N × 1 vectors with elements from t∗n,i = (nTH)−1
∑n

j=1

∑T
s=1 xjsx

>
js(θ(zj)−

∑
0≤|k|≤p

1
k!

(Dkθ(z))(zj − z)k)
(

zi−z
h

)i
Kh,zjz and (nTH)−1

∑n
j=1

∑T
s=1 xjsεjs

(
zi−z

h

)i
Kh,zjz, respectively.

Since θ̂LP (z) = P1δ̂(z), we have

β̂LP =
1

n

n∑
i=1

θ̂LP (zi)

=
1

n

n∑
i=1

θ(zi) +
1

n

n∑
i=1

P1Sn(zi)
−1 [Cn1(zi) + Cn2(zi)]

=
1

n

n∑
i=1

θ(zi) +
1

n

n∑
i=1

P1S(zi)
−1 [Cn1(zi) + Cn2(zi)] + (s.o.),

where (s.o.) denotes terms with smaller orders.
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Similar as in the proof of Theorem2.2.1, we have that if p > 0 is an odd integer,

1

n

n∑
i=1

P1S(zi)
−1Cn1(zi) =

∑

|k|=p+1

µkh
k

k!
P1E

[
S−1

i MiΘi

]

+Op(‖h‖p+2 + n−1H−1/2‖h‖p+1)

= BLP + Op(‖h‖p+2 + n−1H−1/2‖h‖p+1),

1

n

n∑
i=1

P1S(zi)
−1Cn2(zi) =

1

nT

n∑
i=1

T∑
s=1

P1S(zi)
−1Γisx

>
is(αi − E(αi|zi))f(zi)

+
1

nT

n∑
i=1

T∑
s=1

P1S(zi)
−1uisf(zi)Γis

+Op(‖h‖2/
√

n + (nH1/2)−1),

where Mi = M(zi) = (M0,p+1(zi)
>,M1,p+1(zi)

>, . . . , Mp,p+1(zi)
>)>, Mj,p+1(z) is cor-

responding to Sn,j,p+1(z) which is similar as elements in Sn(z), Θi = Θ(zi) which

has the elements from (1/k!)Dkθ(z)|z=zi
using the lexicographical order, and Γis is a

N × 1 column vector with elements from xisµα following the lexicographical order.

The elements in M(z) are from sα+p+1 = T−1
∑T

s=1 E[xjsx
>
js|zj = z]f(z)µα+p+1. If

we denote S for the N ×N matrix which has the elements from µα+γ, 0 ≤ |α| ≤ p,

0 ≤ |γ| ≤ p, and M for the N × 1 vector which has the elements from µα+p+1 fol-

lowing the lexicographical order introduced earlier. We have that S−1
i Mi = S−1M .

Thus BLP = P1S
−1M

∑
|k|=p+1

µkhk

k!
E [Θi].
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If p > 0 is an even integer, we have that

1

n

n∑
i=1

P1S(zi)
−1Cn1(zi) =

∑

|k|=p+2

µkh
k

k!
P1E

[
S−1

i MiΘi

]

+Op(‖h‖p+4 + n−1H−1/2‖h‖p+2)

= P1S
−1M

∑

|k|=p+2

µkh
k

k!
E [Θi]

+Op(‖h‖p+4 + n−1H−1/2‖h‖p+2)

= BLP + Op(‖h‖p+4 + n−1H−1/2‖h‖p+2).

Therefore, we have that

√
n

(
β̂LP − β −BLP

)

=
1√
n

n∑
i=1

(θi − β) +
1√
nT

n∑
i=1

T∑
s=1

P1S(zi)
−1Γisx

>
is(αi − E(αi|zi))f(zi)

+
1√
nT

n∑
i=1

T∑
s=1

P1S(zi)
−1uisf(zi)Γis + Op(ζn)

d→ N(0, VLP ) (A.9)

by the Lindeberg central limit theorem, where

VLP = V ar(θi) + T−2V ar

(
T∑

s=1

P1S(zi)
−1Γisx

>
is(αi − E(αi|zi))f(zi)

)

+T−2V ar

(
T∑

s=1

P1S(zi)
−1uisf(zi)Γis

)
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ζn = (nH)−1/2 + (n||h||2p+4)1/2 + (nH)−1/2‖h‖p+1 +
√

n‖h‖2p+2(ln n/(nH))1/2

+‖h‖(nH)−1/2 + (nH)−1/2(ln n/(nH))1/2 = op(1)

if p > 0 is an odd integer, or

ζn = (nH)−1/2 + (n||h||2p+8)1/2 + (nH)−1/2‖h‖p+2 +
√

n||h||p+3 +
√

n‖h‖2p+4

(ln n/(nH))1/2 + ‖h‖(nH)−1/2 + (nH)−1/2(ln n/(nH))1/2 = op(1)

if p > 0 is an even integer.
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APPENDIX B

Proof of Proposition 3.1.1: Since βi = β + αi, g(zi) = E(αi|xit, zi) = E(αi|zi),

we have

yit = 1(vit + x>itβ + x>itαi + uit > 0)

= 1(vit + x>itβ + x>itg(zi) + x>it(αi − g(zi)) + uit > 0)

= 1(vit + x>itθ(zi) + eit > 0),

where θ(zi) = β+g(zi), and eit = x>it(αi−g(zi))+uit. Since E(uit|xit, zi) = 0, we have

E(eit|xit, zi) = E[x>it(αi − g(zi))|xit, zi] + E(uit|xit, zi) = x>itE[(αi − g(zi))|xit, zi] +

E[uit|xit, zi] = 0.

From Assumption C2, we have the conditional distribution Feit
(eit|vit, xit, zi) of

eit conditioning on (vit, xit, zi) satisfies that Feit
(eit|vit, xit, zi) = Feit

(eit|xit, zi). Also,

y∗it =





[yit − 1(vit > 0)]/ft(vit|xit, zi) if vit ∈ [Lt, Kt]

0 otherwise

,

then

E(y∗it|xit, zi) = E [(yit − 1(vit > 0))/ft(vit|xit, zi)|xit, zi]

=
∫ Kt

Lt

E[yit − 1(vit > 0)|vit, xit, zi]
ft(vit|xit, zi)

ft(vit|xit, zi)dvit
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=
∫ Kt

Lt

∫

Ωet

[1(vit + x>itθ(zi) + eit > 0)− 1(vit > 0)]dFeit(eit|vit, xit, zi)dvit

=
∫

Ωet

∫ Kt

Lt

[1(vit > sit)− 1(vit > 0)]dvitdFeit(eit|xit, zi) Let (sit = −x>itθ(zi)− eit)

=
∫

Ωet

∫ Kt

Lt

[(1(vit > sit)− 1(vit > 0))1(sit ≤ 0) + (1(vit > sit)− 1(vit > 0))1(sit > 0)]

dvitdFeit(eit|xit, zi)

=
∫

Ωet

∫ Kt

Lt

[1(sit < vit ≤ 0)1(sit ≤ 0)− 1(0 < vit ≤ sit)1(sit > 0)]dvitdFeit(eit|xit, zi)

=
∫

Ωet

[1(sit ≤ 0)
∫ 0

sit

1dvit − 1(sit > 0)
∫ sit

0
1dvit]dFeit(eit|xit, zi)

=
∫

Ωet

−sitdFeit(eit|xit, zi)

=
∫

Ωet

(x>itθ(zi) + eit)dFeit(eit|xit, zi)

= x>itθ(zi) + E(eit|xit, zi)

= x>itθ(zi).

This completes the proof.

We give some shorthand notations first. These notations will be used throughout

the proof of Theorem 3.2.1. Let

Kh′,z,jz = Kh′(zj − z), Kh′,z,ji = Kh′(zj − zi), Kh′,z,ij = Kh′(zi − zj),

Kh′,z,jk = Kh′(zj − zk), Kh′,z,kj = Kh′(zk − zj), Kh′,z,ki = Kh′(zk − zi),

Kh′,z,ik = Kh′(zi − zk), Kh,vxz,kj = Kh(vkt − vjt, xkt − xjt, zk − zj),

Kh,vxz,ki = Kh(vkt − vit, xkt − xit, zk − zi),
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Kh,vxz,ij = Kh(vit − vjt, xit − xjt, zi − zj),

Kh,vxz,jk = Kh(vjt − vkt, xjt − xkt, zj − zk),

Kh,vxz,ik = Kh(vit − vkt, xit − xkt, zi − zk),

Kh,vxz,ji = Kh(vjt − vit, xjt − xit, zj − zi),

Kh,vxz,mj = Kh(vmt − vjt, xmt − xjt, zm − zj), Kh̃,xz,mj = Kh̃(xmt − xjt, zm − zj),

f̂t,v|xz,j = f̂t(vjt|xjt, zj), ft,v|xz,j = ft(vjt|xjt, zj), f̂t,vxz,j = f̂t(vjt, xjt, zj),

ft,vxz,j = ft(vjt, xjt, zj), ft,vxz,i = ft(vit, xit, zi), ft,vxz,k = ft(vkt, xkt, zk),

f−1
t,vxz,j = f−1

t (vjt, xjt, zj), f−1
t,vxz,i = f−1

t (vit, xit, zi), f−1
t,vxz,k = f−1

t (vkt, xkt, zk),

f̂t,xz,j = f̂t(xjt, zj), ft,xz,j = ft(xjt, zj),

1τn,j = 1τn(vjt, xjt, zj), 1τn,i = 1τn(vit, xit, zi), 1τn,k = 1τn(vkt, xkt, zk),

θj = θ(zj), θi = θ(zi), θk = θ(zk),

mi = m(zi) = T−1

T∑
s=1

E[xisx
>
is|zi]fz(zi), mj = m(zj), mk = m(zk).

Proof of Theorem 3.2.1: For z ∈ Ωz, let

An1(z) = (nTH ′)−1

n∑
j=1

T∑
t=1

xjtx
>
jtKh′,z,jz1τn,j1εn(z),

An2(z) = (nTH ′)−1

T∑
t=1

n∑
j=1

(
xjt(yjt − 1(vjt > 0))Kh′,z,jz/f̂t,v|xz,j

)
1τn,j1εn(z).
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We have that

θ̂LC(z) = An1(z)−1An2(z)

= An1(z)−1(nTH ′)−1
T∑

t=1

n∑

j=1

xjtE(y∗jt|xjt, zj)Kh′,z,jz

ft,v|xz,j

f̂t,v|xz,j

1τn,j1εn(z)

+An1(z)−1(nTH ′)−1
T∑

t=1

n∑

j=1

xjt(y∗jt − E(y∗jt|xjt, zj))Kh′,z,jz

ft,v|xz,j

f̂t,v|xz,j

1τn,j1εn(z)

= θ(z)

+An1(z)−1(nTH ′)−1
T∑

t=1

n∑

j=1

xjtx
>
jt

(
θj

ft,v|xz,j

f̂t,v|xz,j

− θ(z)

)
Kh′,z,jz1τn,j1εn(z)

+An1(z)−1(nTH ′)−1
T∑

t=1

n∑

j=1

xjt(y∗jt − E(y∗jt|xjt, zj))Kh′,z,jz

ft,v|xz,j

f̂t,v|xz,j

1τn,j1εn(z)

= θ(z) + An1(z)−1(nTH ′)−1
T∑

t=1

n∑

j=1

xjtx
>
jt(θj − θ(z))

ft,v|xz,j

f̂t,v|xz,j

Kh′,z,jz1τn,j1εn(z)

−An1(z)−1(nTH ′)−1
T∑

t=1

n∑

j=1

xjtx
>
jtθ(z)Kh′,z,jz

(
1− ft,v|xz,j

f̂t,v|xz,j

)
1τn,j1εn(z)

+An1(z)−1(nTH ′)−1
T∑

t=1

n∑

j=1

xjt(y∗jt − E(y∗jt|xjt, zj))Kh′,z,jz

ft,v|xz,j

f̂t,v|xz,j

1τn,j1εn(z)

≡ θ(z) + An1(z)−1An3(z) + An1(z)−1An4(z) + An1(z)−1An5(z),

where

An3(z) = (nTH ′)−1
T∑

t=1

n∑

j=1

xjtx
>
jt(θj − θ(z))

ft,v|xz,j

f̂t,v|xz,j

Kh′,z,jz1τn,j1εn(z),

An4(z) = −(nTH ′)−1
T∑

t=1

n∑

j=1

xjtx
>
jtθ(z)Kh′,z,jz

(
1− ft,v|xz,j

f̂t,v|xz,j

)
1τn,j1εn(z),

An5(z) = An1(z)−1(nTH ′)−1
T∑

t=1

n∑

j=1

xjt(y∗jt − E(y∗jt|xjt, zj))Kh′,z,jz

ft,v|xz,j

f̂t,v|xz,j

1τn,j1εn(z).
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By Lemma B.1.2, we have uniformly in z ∈ Ωz,

An1(z)−1 = m(z)−1 + Op

(||h′||ν + (ln n)1/2(nH ′)−1/2
)
,

where m(z) = T−1
∑T

s=1 E[xjsx
>
js|zj = z]fz(z).

Then, we have that

β̂LC =
1

n

n∑
i=1

θ̂LC(zi)

=
1

n

n∑
i=1

θi +
1

n

n∑
i=1

An1(zi)
−1 [An3(zi) + An4(zi) + An5(zi)]

= β +
1

n

n∑
i=1

g(zi) +
1

n

n∑
i=1

m−1
i [An3(zi) + An4(zi) + An5(zi)] + ηn,

where ηn = Op

(||h′||ν + (ln n)1/2(nH ′)−1/2
)
Op(‖An3(zi)‖+ ‖An4(zi)‖+ ‖An5(zi)‖).

Since f̂t,v|xz,j =
f̂t,vxz,j

f̂t,xz,j
, where

f̂t,vxz,j = (nH)−1

n∑
m=1

Kh,vxz,mj and f̂t,xz,j = (nH̃)−1

n∑
m=1

Kh̃,xz,mj,

we have

ft,v|xz,j

f̂t,v|xz,j

= 1 + ft,v|xz,j(
1

f̂t,v|xz,j

− 1

ft,v|xz,j

)

= 1 +
f̂t,xz,j − ft,xz,j

ft,xz,j

+
ft,vxz,j − f̂t,vxz,j

ft,vxz,j

+
(ft,vxz,j f̂t,xz,j − f̂t,vxz,jft,xz,j)(ft,vxz,j − f̂t,vxz,j)

ft,xz,jft,vxz,j f̂t,vxz,j

. (B.1)
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Then, we have that

Bn1

=
1
n

n∑

i=1

m−1
i An3(zi)

=
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtx
>
jt(θj − θi)Kh′,z,ji1τn,j1εn(zi)

+
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtx
>
jt(θj − θi)Kh′,z,ji

f̂t,xz,j − ft,xz,j

ft,xz,j
1τn,j1εn(zi)

+
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtx
>
jt(θj − θi)Kh′,z,ji

ft,vxz,j − f̂t,vxz,j

ft,vxz,j
1τn,j1εn(zi)

+
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtx
>
jt(θj − θi)Kh′,z,ji

(ft,vxz,j f̂t,xz,j − f̂t,vxz,jft,xz,j)
ft,xz,jft,vxz,j

×(ft,vxz,j − f̂t,vxz,j)

f̂t,vxz,j

1τn,j1εn(zi)

≡ Bn1,1 + Bn1,2 + Bn1,3 + Bn1,4.

First we consider Bn1,1. We have

Bn1,1 =
1

n

n∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jt(θj − θi)Kh′,z,ji1τn,j1εn(zi).

Further, Bn1,1 can be written as a second order U-statistic.

Bn1,1 = n−2n(n− 1)

2

1

n(n− 1)

n∑
i=1

n∑

j 6=i

Hn1,ij ≡ n−2n(n− 1)

2
Un1,
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where

Hn1,ij = (TH ′)−1

T∑
t=1

[m−1
i xjtx

>
jt(θj − θi)1τn,j1εn(zi)

+m−1
j xitx

>
it(θi − θj)1τn,i1εn(zj)]Kh′,z,ji.

Using the U-statistic H-decomposition we have

Un1 = E[Hn1,ij] +
2

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

+
2

n(n− 1)

n∑
i=1

n∑
j>i

[Hn1,ij −Hn1,i −Hn1,j + E(Hn1,ij)] ,

where Hn1,i = E[Hn1,ij|wi], wi = (vi, xi, zi) = (vi1, . . . , viT , xi1, . . . , xiT , zi).

Since εn > τn and ‖h′‖/(εn−τn) → 0 and the kernel function K( · ) has a compact

support, the trimming functions 1τn,j and 1εn(zi) will ensure that all of the points

which have boundary effects are excluded from our estimated locations. We have

E[Hn1,ij] = (TH ′)−1

T∑
t=1

E[m−1
i xjtx

>
jt(θj − θi)Kh′,ij1τn,j1εn(zi)]

=

q∑

l=1

h′νl Bl,LC + Op(‖h′‖ν+1),
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where Bl,LC = µν

∑
k1+k2=ν,k2 6=0

1
k1!k2!

E

[
m−1

i (∂k1mi

∂z
k1
l

)(∂k2θi

∂z
k2
l

)

]
. Also, we have

E




(
2

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

)(
2

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

)>


= V ar

[
2

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

]

= O(n−1‖h′‖2ν), (B.2)

and

V ar

[
2

n(n− 1)

n∑
i=1

n∑
j>i

[Hn1,ij −Hn1,i −Hn1,j + E(Hn1,ij)]

]

=
4

n2(n− 1)2

n∑
i=1

n∑
j>i

V ar [Hn1,ij −Hn1,i −Hn1,j + E(Hn1,ij)]

= O(n−2H ′−1‖h′‖2). (B.3)

Thus, Bn1,1 = Op(‖h′‖ν + (nH ′1/2)−1‖h′‖).

Then, we evaluate Bn1,2 and Bn1,3, and by U-statistics Hoeffding decomposition,

we have that

Bn1,2 + Bn1,3 = Op

(
‖h′‖ν‖h‖ν + ‖h′‖ν‖h̃‖ν + n−1/2‖h′‖ν + (n3/2H ′1/2H1/2)−1

×‖h′‖‖h‖+ (n3/2H ′1/2H1/2)−1‖h′‖‖h̃‖
)
.

We omit the detailed derivation here to save the space. However, the procedure is

similar as the derivation of the order of Bn2,1,5 where the details are provided.
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For Bn1,4, we have

E(‖Bn1,4‖)

≤ (TH ′)−1

T∑
t=1

E
(
‖m−1

i xjtx
>
jt(θj − θi)Kh′,z,ji

(ft,vxz,j f̂t,xz,j − f̂t,vxz,jft,xz,j)

ft,xz,jft,vxz,j

×(ft,vxz,j − f̂t,vxz,j)

f̂t,vxz,j

1τn,j1εn(zi)‖
)

≤ (TH ′)−1

T∑
t=1

E
(
‖m−1

i xjtx
>
jt(θj − θi)Kh′,z,ji1εn(zi)‖

∣∣∣(ft,vxz,j f̂t,xz,j − f̂t,vxz,jft,xz,j)

ft,xz,jft,vxz,j

×(ft,vxz,j − f̂t,vxz,j)

f̂t,vxz,j

1τn,j

∣∣∣
)
.

From Hansen (2008), we have

sup
(v,x,z)∈Ωvxz

|f̂t(v, x, z)− ft(v, x, z)| = Op(‖h‖ν + (ln n)1/2(nH)−1/2),

sup
(x,z)∈Pxz(Ωvxz)

|f̂t(x, z)− ft(x, z)| = Op(‖h̃‖ν + (ln n)1/2(nH̃)−1/2),

where Pxz( · ) is the projection of Cartesian product. Hence, we have that Bn1,4 =

Op(‖h′‖‖h‖2ν + ‖h′‖(ln n)(nH)−1 + ‖h′‖‖h‖ν‖h̃‖ν + ‖h′‖(ln n)n−1H−1/2H̃−1/2).

Let

Bn2 = − 1

n

n∑
i=1

m−1
i An4(zi)

=
1

n

n∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθiKh′,z,ji

(
1− ft,v|xz,j

f̂t,v|xz,j

)
1τn,j1εn(zi).
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From the equation (B.1), we have

1− ft,v|xz,j

f̂t,v|xz,j

= − f̂t,xz,j − ft,xz,j

ft,xz,j

− ft,vxz,j − f̂t,vxz,j

ft,vxz,j

−(ft,vxz,j f̂t,xz,j − f̂t,vxz,jft,xz,j)(ft,vxz,j − f̂t,vxz,j)

ft,xz,jft,vxz,j f̂t,vxz,j

.

Hence,

Bn2 = − 1

n

n∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθiKh′,z,ji

f̂t,vxz,j − ft,vxz,j

ft,vxz,j

1τn,j1εn(zi)

− 1

n

n∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθiKh′,z,ji

ft,xz,j − f̂t,xz,j

ft,xz,j

1τn,j1εn(zi)

− 1

n

n∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθiKh′,z,ji

(f̂t,vxz,jft,xz,j − ft,vxz,j f̂t,xz,j)

ft,xz,jft,vxz,j

×(ft,vxz,j − f̂t,vxz,j)

f̂t,vxz,j

1τn,j1εn(zi)

≡ −Bn2,1 −Bn2,2 −Bn2,3.

First, we consider Bn2,1. We have

Bn2,1

=
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtx
>
jtθiKh′,z,ji

f̂t,vxz,j − ft,vxz,j

ft,vxz,j
1τn,j1εn,i

=
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtx
>
jtθiKh′,z,ji

(nH)−1
∑n

k=1 Kh,vxz,kj − ft,vxz,j

ft,vxz,j
1τn,j1εn,i

= (n3TH ′H)−1
n∑

i=1

n∑

j=1

n∑

k=1

T∑

t=1

m−1
i xjtx

>
jtθiKh′,z,ji (Kh,vxz,kj −Hft,vxz,j) f−1

t,vxz,j1τn,j1εn,i
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= (n3TH ′H)−1
n∑

i=1

T∑

t=1

m−1
i xitx

>
itθiKh′(0) (Kh(0)−Hft,vxz,i) f−1

t,vzx,i1τn,j1εn,i

+(n3TH ′H)−1
n∑

i=1

n∑

k 6=i

T∑

t=1

m−1
i xitx

>
itθiKh′(0) (Kh,vxz,ki −Hft,vxz,i) f−1

t,vzx,i1τn,j1εn,i

+(n3TH ′H)−1
n∑

i=1

n∑

j 6=i

T∑

t=1

m−1
i xjtx

>
jtθiKh′,z,ji (Kh(0)−Hft,vxz,j) f−1

t,vxz,j1τn,j1εn,i

+(n3TH ′H)−1
n∑

i=1

n∑

j 6=i

T∑

t=1

m−1
i xjtx

>
jtθiKh′,z,ji (Kh,vxz,ij −Hft,vxz,j) f−1

t,vxz,j1τn,j1εn,i

+(n3TH ′H)−1
∑∑ ∑

i6=j 6=k

T∑

t=1

m−1
i xjtx

>
jtθiKh′,z,ji (Kh,vxz,kj −Hft,vxz,j) f−1

t,vxz,j

×1τn,j1εn,i

≡ Bn2,1,1 + Bn2,1,2 + Bn2,1,3 + Bn2,1,4 + Bn2,1,5.

It is easy to see that Bn2,1,1 = Op((n
2H ′H)−1), Bn2,1,2, Bn2,1,3 and Bn2,1,4 can be writ-

ten as second order U-statistics, and Bn2,1,5 can be written a third order U-statistic.

Also, by the Hoeffding decomposition, we have that Bn2,1,2 = Op(‖h‖ν(nH ′)−1),

Bn2,1,3 = Op((nH)−1), and Bn2,1,4 = Op(‖h‖νn−1).

We can write Bn2,1,5 as Bn2,1,5 = n−3
∑∑ ∑
1≤i<j<k≤n

ψn(vi, xi, zi, vj, xj, zj, vk, xk, zk),

where

ψn(vi, xi, zi, vj, xj, zj, vk, xk, zk)

= (TH ′H)−1

T∑
t=1

m−1
i xjtx

>
jtθiKh′,z,ji (Kh,vxz,kj −Hft,vxz,j) f−1

t,vxz,j1τn,j1εn(zi)

+(TH ′H)−1

T∑
t=1

m−1
j xitx

>
itθjKh′,z,ij (Kh,vxz,ki −Hft,vxz,i) f−1

t,vzx,i1τn,i1εn(zj)
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+(TH ′H)−1

T∑
t=1

m−1
k xjtx

>
jtθkKh′,z,jk (Kh,vxz,ij −Hft,vxz,j) f−1

t,vxz,j1τn,j1εn(zk)

+(TH ′H)−1

T∑
t=1

m−1
i xktx

>
ktθiKh′,z,ki (Kh,vxz,jk −Hft,vzx,k) f−1

t,vzx,k1τn,k1εn(zi)

+(TH ′H)−1

T∑
t=1

m−1
k xitx

>
itθkKh′,z,ik (Kh,vxz,ji −Hft,vxz,i) f−1

t,vzx,i1τn,i1εn(zk)

+(TH ′H)−1

T∑
t=1

m−1
j xktx

>
ktθjKh′,z,kj (Kh,vxz,ik −Hft,vzx,k) f−1

t,vzx,k1τn,k1εn(zj).

Let wi = (vi1, . . . , viT , xi1, . . . , xiT , zi), by the Hoeffding decomposition, we have

Bn2,1,5 = n−3(n(n− 1)(n− 2)/6)
[
E(ψn) +

3

n

n∑
i=1

(
E[ψn|wi]− E(ψn)

)

+
6

n(n− 1)

∑
1≤i<j≤n

(
E[ψn|wi, wj]− E[ψn|wi]− E[ψn|wj] + E[ψn]

)

+
6

n(n− 1)(n− 2)

∑

1≤i<j<k≤n

(
ψn − E[ψn|wi, wj]− E[ψn|wi, wk]

−E[ψn|wj, wk] + E[ψn|wi] + E[ψn|wj] + E[ψn|wk]− E[ψn]
)]

≡ Bn2,1,5,1 + Bn2,1,5,2 + Bn2,1,5,3 + Bn2,1,5,4.

By standard calculations, we have

Bn2,1,5,1 = (n−3n(n− 1)(n− 2)/6)E[ψn] = Op(‖h‖ν),

Bn2,1,5,2 = (n−3n(n− 1)(n− 2)/6)
3

n

n∑
i=1

(
E[ψn|wi]− E(ψn)

)

=
1

n

n∑
i=1

T−1

T∑
t=1

(
m−1

i E[xitx
>
it |zi]θifz(zi)− E[θi]

)
+ Op(‖h‖ν + n−1).
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Also, it is easy to see that

Bn2,1,5,3 = Op(n
−1), and Bn2,1,5,4 = Op((n

3/2H ′1/2H1/2)−1‖h‖).

Hence, we have that

Bn2,1 =
1

n

n∑
i=1

T−1

T∑
t=1

(θi − E[θi]) + Op

(
(n2H ′H)−1 + ‖h‖ν(nH ′)−1 + (nH)−1

+‖h‖ν + n−1 + (n3/2H ′1/2H1/2)−1‖h‖
)
. (B.4)

Similarly, we can show that

Bn2,2 = − 1

n

n∑
i=1

T−1

T∑
t=1

(θi − E[θi]) + Op

(
(n2H ′H̃)−1 + ‖h̃‖ν(nH ′)−1

+(nH̃)−1 + ‖h̃‖ν + n−1 + (n3/2H ′1/2H̃1/2)−1‖h̃‖
)
. (B.5)

Similar as the derivation of Bn1,4, we have Bn2,3 = Op(‖h‖2ν + (ln n)(nH)−1 +

‖h‖ν‖h̃‖ν + (ln n)n−1H−1/2H̃−1/2).

Denote

ξjt = y∗jt − E(y∗jt|xjt, zj).

By (B.1), we have

Bn3 =
1
n

n∑

i=1

m−1
i An5(zi)
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=
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjt(y∗jt − E(y∗jt|xjt, zj))Kh′,z,ji

ft,v|xz,j

f̂t,v|xz,j

1τn,j1εn(zi)

=
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtξjtKh′,z,ji1τn,j1εn(zi)

+
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtξjtKh′,z,ji
f̂t,xz,j − ft,xz,j

ft,xz,j
1τn,j1εn(zi)

+
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtξjtKh′,z,ji
ft,vxz,j − f̂t,vxz,j

ft,vxz,j
1τn,j1εn(zi)

+
1
n

n∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtξjtKh′,z,ji
(ft,vxz,j f̂t,xz,j − f̂t,vxz,jft,xz,j)

ft,xz,jft,vxz,j

×(ft,vxz,j − f̂t,vxz,j)

f̂t,vxz,j

1τn,j1εn(zi)

≡ Bn3,1 + Bn3,2 + Bn3,3 + Bn3,4.

Then E[Bn3,1] = 0. We have

Bn3,1 =
1

n

n∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtξjtKh′,z,ji1τn,j1εn(zi).

Moreover, we can decompose Bn3,1 into two terms

Bn3,1 = Bn3,1,1 + Bn3,1,2,

where

Bn3,1,1 = (n2TH ′)−1

n∑
i=1

T∑
t=1

m−1
i xitξitKh′(0)1τn,i1εn(zi),
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and

Bn3,1,2 = (n2TH ′)−1

n∑
i=1

n∑

j 6=i

T∑
t=1

m−1
i xjtξjtKh′,z,ji1τn,j1εn(zi).

It is easy to see that E[Bn3,1,1] = 0 and E[||Bn3,1,1||2] = (n4H ′2)−1O(n) =

O((n3H ′2)−1). Hence, Bn3,1,1 = Op((n
3/2H ′)−1).

Also, Bn3,1,2 can be written as a second order U-statistic.

Bn3,1,2 = n−2n(n− 1)

2

1

n(n− 1)

n∑
i=1

n∑

j 6=i

Hn3,ij ≡ n−2n(n− 1)

2
Un3,

where Hn3,ij = (TH ′)−1
∑T

t=1(m
−1
i xjtξjt1τn,j1εn(zi)+m−1

j xitξit1τn,i1εn(zj))Kh′,ij. Since

Un3 has zero mean, its H-decomposition is given by

Un3 = Un3,1 + Un3,2,

where Un3,1 = 2
n

∑n
i=1 Hn3,i, Un3,2 = 2

n(n−1)

∑n
i=1

∑n
j>i [Hn3,ij −Hn3,i −Hn3,j], Hn3,i =

E[Hn3,ij|wi], and wi = (vi, xi, αi, zi, ui) = (vi1, . . . , viT , xi1, . . . , xiT , αi, zi, ui1, . . . , uiT ).

Then, we have

Un3,1 =
1

nTH ′

n∑
i=1

T∑
t=1

E
[
(m−1

i xjtξjt1τn,j1εn(zi) + m−1
j xitξit1τn,i1εn(zj))Kh′,ij|wi

]

=
1

nTH ′

n∑
i=1

T∑
t=1

E[m−1
j Kh,ij1εn(zj)|wi]xitξit1τn,i,
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=
1

nT

n∑
i=1

T∑
t=1

m−1
i fz(zi)xitξit1τn,i + Op(‖h′‖ν+1/

√
n). (B.6)

Also, we have E[||Un2,2||2] = (n4H ′2)−1n2O(H ′) = O((n2H ′)−1). Hence, Un2,2 =

Op((nH ′1/2)−1).

Then we consider Bn3,2, Bn3,3, and Bn3,4. Similar as (B.4) and (B.5), we have

that

Bn3,2 =
1

nT

n∑
i=1

T∑
t=1

m−1
i fz(zi)xitE[ξit|xit, zi]1τn,i + Op

(
(n2H ′H̃)−1 + ‖h̃‖ν(nH ′)−1

+(nH̃)−1 + ‖h̃‖ν + (n3/2H ′1/2H̃1/2)−1‖h̃‖
)

= Op((n
2H ′H̃)−1 + ‖h̃‖ν(nH ′)−1 + (nH̃)−1 + ‖h̃‖ν + (n3/2H ′1/2H̃1/2)−1‖h̃‖),

Bn3,3 = − 1

nT

n∑
i=1

T∑
t=1

m−1
i fz(zi)xitE[ξit|vi, xit, zi]1τn,i + Op

(
(n2H ′H)−1

+‖h‖ν(nH ′)−1 + (nH)−1 + ‖h‖ν + n−1 + (n3/2H ′1/2H1/2)−1‖h‖
)

= − 1

nT

n∑
i=1

T∑
t=1

m−1
i fz(zi)xit(E[y∗it|vi, xit, zi]− E[y∗it|xit, zi])1τn,i

+Op

(
(n2H ′H)−1 + ‖h‖ν(nH ′)−1 + (nH)−1 + ‖h‖ν + n−1

+(n3/2H ′1/2H1/2)−1‖h‖
)
,

since E[ξit|xit, zi] = 0.

Similar as the derivation of Bn1,4, we have Bn3,4 = Op(‖h‖2ν + (ln n)(nH)−1 +

‖h‖ν‖h̃‖ν + (ln n)n−1H−1/2H̃−1/2).
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Moreover, by Cauchy-Schwarz inequality, we have that

E‖ 1

nT

n∑
i=1

T∑
t=1

(m−1
i fz(zi)xitξit)

⊗2(1− 1τn,i)‖

≤ {E(‖m−1
i fz(zi)xitξit‖2)P ((vi, xi, zi) ∈ Ωvxz)}1/2.

P ((vit, xit, zi) ∈ Ωvxz) is the probability that (vit, xit, zi) is within a distance τn of the

boundary ∂Svxz of Svxz. Since the joint density function fvxz(vit, xit, zi) of (vit, xit, zi)

is bounded and the volume of the set that is within a distance τn of ∂Svxz is pro-

portional to τn, we have that P ((vit, xit, zi) ∈ Ωvxz) = O(τn). Hence, we have

V ar( 1√
nT

∑n
i=1

∑T
t=1 m−1

i fz(zi)xitξit1τn,i) = V ar( 1√
nT

∑n
i=1

∑T
t=1 m−1

i fz(zi)xitξit) +

o(1).

Therefore, we have that

√
n(β̂LC − β) =

1√
n

n∑
i=1

g(zi)− 1√
nT

n∑
i=1

T∑
t=1

m−1
i fz(zi)xitξit1τn,i

− 1

nT

n∑
i=1

T∑
t=1

m−1
i fz(zi)xit(E[y∗it|vi, xit, zi]− E[y∗it|xit, zi])1τn,i

+Op(δn)

d→ N(0, VLC)

by the Lindeberg central limit theorem, where

VLC = V ar(g(zi)) + T−2V ar
( T∑

t=1

(m−1
i fz(zi)xitξit
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+m−1
i fz(zi)xit(E[y∗it|vi, xit, zi]− E[y∗it|xit, zi]))

)
,

δn =
√

n‖h′‖ν +
√

n(nH ′1/2)−1‖h′‖+
√

nn−1/2‖h′‖ν

+
√

n(n3/2H ′1/2H1/2)−1‖h′‖‖h‖+
√

n(n3/2H ′1/2H1/2)−1‖h′‖‖h̃‖

+
√

n(ln n)(nH)−1 +
√

n‖h‖ν‖h̃‖ν +
√

n(ln n)n−1H−1/2H̃−1/2

+
√

n(n2H ′H)−1 +
√

n‖h‖ν(nH ′)−1 +
√

n(nH)−1 +
√

n‖h‖ν +
√

nn−1

+
√

n(n3/2H ′1/2H1/2)−1‖h‖+
√

n(n2H ′H̃)−1 +
√

n‖h̃‖ν(nH ′)−1 +
√

n(nH̃)−1

+
√

n‖h̃‖ν +
√

n(n3/2H ′1/2H̃1/2)−1‖h̃‖+
√

n‖h′‖ν+1/
√

n +
√

n(nH ′1/2)−1

+
√

nηn = op(1),

and

√
nηn =

√
nOp

(
||h′||ν + (ln n)1/2(nH ′)−1/2

)
Op(‖h′‖ν + (nH ′)−1/2) = op(1).

Lemma B.1.2. Define An1(z) = 1
nTH′

∑n
j=1

∑T
s=1 xjsx

>
jsKh′,zjz, and m(z) = T−1

∑T
s=1

E[xjsx
>
js|zj = z]fz(z), where Kh′,zjz =

∏q
l=1 k

(
zjl−zl

hl

)
, then under Assumptions B4-

B7,

An1(z)−1 = m(z)−1 + Op

(||h′||ν + (ln n)1/2(nH ′)−1/2
)
,
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uniformly in z ∈ Ωz, where Ωz = {z ∈ Sz : minl∈{1,...,q} |zl − z0,l| ≥ εn for some z0 ∈

∂Sz}, ∂Sz is the boundary of the compact set Sz, εn → 0 and ‖h′‖/εn → 0.

Proof: First, we have

E[An1(z)] = m(z) + O (‖h′‖ν) , (B.7)

uniformly in z ∈ Ωz. Following similar arguments used in Masry (1996) when deriving

uniform convergence rates for nonparametric kernel estimators, we know that

An1(z)− E[An1(z)] = Op

(
(ln n)1/2

(nH ′)1/2

)
, (B.8)

uniformly in z ∈ Ωz. Combining (B.7) and (B.8) we obtain

An1(z)−m(z) = Op

(
||h′||ν + (ln n)1/2 (nH ′)−1/2

)
, (B.9)

uniformly in z ∈ Ωz.

Using (B.9) we obtain

An1(z)−1 = [m(z) + An1(z)−m(z)]−1

= m(z)−1 + Op

(||h′||ν + (ln n)1/2(nH ′)−1/2
)
,

which completes the proof of Lemma B.1.2.
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APPENDIX C

Similar as Theorem 2.1 in Khan and Lewbel (2007), we can prove the following

useful lemmas.

Lemma C.1.3. Let h(vit, xit, zi, εit) be any function. If

F ∗
ε (εit|vit, xit, zi) = F ∗

ε (εit|xit, zi),

and the support of the random variable vit is the interval [L,K], then

E∗
[
h(vit, xit, zi, εit)

f ∗t (vit|xit, zi)

∣∣∣xit, zi

]
= E∗

[∫ K

L

h(vit, xit, zi, εit)dvit

∣∣∣xit, zi

]
. (C.1)

Proof of Lemma C.1.3: It is easy to see that

E∗
[
h(vit, xit, zi, εit)

f ∗t (vit|xit, zi)

∣∣∣xit, zi

]
= E∗

[
E∗[h(vit, xit, zi, εit)|vit, xit, zi]

f ∗t (vit|xit, zi)

∣∣∣xit, zi

]

=

∫ K

L

E∗[h(vit, xit, zi, εit)|vit, xit, zi]

f ∗t (vit|xit, zi)
f ∗t (vit|xit, zi)dvit

=

∫ K

L

E∗[h(vit, xit, zi, εit)|vit, xit, zi]dvit

=

∫ K

L

∫
h(vit, xit, zi, εit)dF ∗

ε (εit|vit, xit, zi)dvit

=

∫ K

L

∫
h(vit, xit, zi, εit)dF ∗

ε (εit|xit, zi)dvit

= E∗
[∫ K

L

h(vit, xit, zi, εit)dvit

∣∣∣xit, zi

]
,
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which completes the proof.

Lemma C.1.4. Let Assumptions D1 to D4 hold. Let H(y∗it, xit, zi, εit) be any function

that is differentiable in y∗it. Let k be any constant that satisfies 0 ≤ k ≤ k̃. Then

E∗
[
∂H(y∗it, xit, zi, εit)

∂y∗it

1(0 ≤ y∗it ≤ k)

f ∗t (vit|xit, zi)

∣∣∣xit, zi

]

= E∗
[
H(k, xit, zi, εit)−H(0, xit, zi, εit)

|γ|
∣∣∣xit, zi

]
. (C.2)

Proof of Lemma C.1.4: By (C.1), we have that

E∗
[
∂H(y∗it, xit, zit, εit)

∂y∗it

1(0 ≤ y∗it ≤ k)

f ∗t (vit|xit, zi)

∣∣∣xit, zi

]

= E∗
[∫ K

L

∂H[y∗it(vit, xit, zi, εit), xit, zi, εit]

∂y∗it(vit, xit, zi, εit)
1(0 ≤ y∗it(vit, xit, zi, εit) ≤ k)dvit

∣∣∣xit, zi

]

=





E∗
[∫ Kγ+x>itθ(zi)+εit

Lγ+x>itθ(zi)+εit

∂H(y∗it,xit,zi,εit)

∂y∗it
1(0 ≤ y∗it ≤ k)dy∗it/γ

∣∣∣xit, zi

]
if γ > 0,

−E∗
[∫ Lγ+x>itθ(zi)+εit

Kγ+x>itθ(zi)+εit

∂H(y∗it,xit,zi,εit)

∂y∗it
1(0 ≤ y∗it ≤ k)dy∗it/γ

∣∣∣xit, zi

]
if γ < 0.

By Assumptions D1 and D3 and 0 < k ≤ k̃, we obtain that

E∗
[
∂H(y∗it, xit, zi, εit)

∂y∗it

1(0 ≤ y∗it ≤ k)

f ∗t (vit|xit, zi)

∣∣∣xit, zi

]

= E∗
[∫ k

0

∂H(y∗it, xit, zi, εit)

∂y∗it
dy∗it/|γ|

∣∣∣xit, zi

]
, (C.3)

which completes the proof.
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Proof of Theorem 4.1.1: Since for any function h(yit, xit, vit, zi, εit)

E[h(yit, xit, vit, zi, εit)1(0 ≤ yit ≤ k)|zi] =
E∗[h(y∗it, xit, vit, zi, εit)1(0 ≤ y∗it ≤ k)|zi]

P ∗(y∗it ≥ 0|zi)
,

we have that

E[1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)|zi] =
k

|γ|P ∗(y∗it ≥ 0|zi)
(C.4)

by (C.3). Also, we have

T∑
t=1

E

[
xit(yit − vitγ0)1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

∣∣∣zi

]

=
T∑

t=1

E∗[xit(y
∗
it − vitγ0)1(0 ≤ y∗it ≤ k)/f∗t (vit|xit, zi)|zi]

P ∗(y∗it ≥ 0|zi)

=
T∑

t=1

E∗[xit(x
>
itβi + εit)1(0 ≤ y∗it ≤ k)/f∗t (vit|xit, zi)|zi]

P ∗(y∗it ≥ 0|zi)

=
T∑

t=1

E∗[E∗[xit(x
>
itβi + εit)1(0 ≤ y∗it ≤ k)/f∗t (vit|xit, zi)|xit, zi]|zi]

P ∗(y∗it ≥ 0|zi)

=
T∑

t=1

k(E∗[xitx
>
it |zi]θ(zi) + E∗[xitεit|zi])

|γ|P ∗(y∗it ≥ 0|zi)
.

Hence, by Assumption A4 and E∗(εit|xit, zi) = 0, we have that

T∑
t=1

E[xitỹit|zi] = (
T∑

t=1

E∗[xitx
>
it |zi])θ(zi).
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Therefore, we get that

θ(zi) =

(
T∑

t=1

E∗[xitx
>
it |zi]

)−1 T∑
t=1

E[xitỹit|zi].

Proof of Theorem 4.1.2: Since vit1(0 ≤ yit ≤ k) = γ−1(y∗it − x>itβi − uit)1(0 ≤

y∗it ≤ k) and

E[h(yit, xit, vit, zi, εit)1(0 ≤ yit ≤ k)] =
E∗[h(y∗it, xit, vit, zi, εit)1(0 ≤ y∗it ≤ k)]

P ∗(y∗it ≥ 0)
,

we have that

E[vit1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)]

= E[γ−1(y∗it − x>itβi − uit)1(0 ≤ y∗it ≤ k)/f∗t (vit|xit, zi)]

=
E∗[γ−1(y∗it − x>itβi − uit)1(0 ≤ y∗it ≤ k)/f∗t (vit|xit, zi)]

P ∗(y∗it ≥ 0)

=
E∗[γ−1y∗it1(0 ≤ y∗it ≤ k)/f∗t (vit|xit, zi)]

P ∗(y∗it ≥ 0)

+
E∗[γ−1(x>itβi − uit)1(0 ≤ y∗it ≤ k)/f∗t (vit|xit, zi)]

P ∗(y∗it ≥ 0)

=

(
k2

2γ|γ| −
kE∗[x>itβi − uit]

|γ|
)

/P ∗(ỹit ≥ 0).

Also, we have that

E[1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)] =
k

|γ|P ∗(y∗it ≥ 0)
.
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Therefore, we have that

ζ(k) =
k

γ
− 1

T

T∑
t=1

2E∗[x>itβi − uit].

Hence, we have that

γ =
k − k′

ζ(k)− ζ(k′)
.

We give some shorthand notations first. These notations will be used throughout

the proof of Theorem 4.2.1. Define

Kh′,z,jz = Kh′(zj − z), Kh′,z,ji = Kh′(zj − z∗i ),

Kh′,z∗,jz = Kh′(z
∗
j − z), Kh′,z∗,ji = Kh′(z

∗
j − z∗i ),

f̂ ∗t,v|xz,j = f̂ ∗t (vjt|xjt, zj), f ∗t,v|xz,j = f ∗t (vjt|xjt, zj), f̂ ∗t,vxz,j = f̂ ∗t (vjt, xjt, zj),

f ∗t,vxz,j = f ∗t (vjt, xjt, zj), f ∗t,vxz,i = f ∗t (vit, xit, zi), f ∗t,vxz,k = f ∗t (vkt, xkt, zk),

(f ∗t,vxz,j)
−1 = (f ∗t (vjt, xjt, zj))

−1, (f ∗t,vxz,i)
−1 = (f ∗t (vit, xit, zi))

−1,

(f ∗t,vxz,k)
−1 = (f ∗t (vkt, xkt, zk))

−1, f̂ ∗t,xz,j = f̂ ∗t (xjt, zj), f ∗t,xz,j = f ∗t (xjt, zj),

1τn,j = 1τn(vjt, xjt, zj), 1τn,i = 1τn(vit, xit, zi), 1τn,k = 1τn(vkt, xkt, zk),

θj = θ(zj), θi = θ(zi), θk = θ(zk),

mi = m(z∗i ) = T−1

T∑
s=1

E∗[xisx
>
is|zi = z∗i ]f

∗
z (z∗i ), mj = m(z∗j ), mk = m(z∗k),

K∗
h,vxz,kj = Kh(v

∗
kt − vjt, x

∗
kt − xjt, z

∗
k − zj),

K∗
h,vxz,ki = Kh(v

∗
kt − vit, x

∗
kt − xit, z

∗
k − zi),
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K∗
h,vxz,ij = Kh(v

∗
it − vjt, x

∗
it − xjt, z

∗
i − zj),

K∗
h,vxz,jk = Kh(v

∗
jt − vkt, x

∗
jt − xkt, z

∗
j − zk),

K∗
h,vxz,ik = Kh(v

∗
it − vkt, x

∗
it − xkt, z

∗
i − zk),

K∗
h,vxz,ji = Kh(v

∗
jt − vit, x

∗
jt − xit, z

∗
j − zi),

K∗
h,vxz,mi = Kh(v

∗
mt − vit, x

∗
mt − xit, z

∗
m − zi), K∗

h̃,xz,mi
= Kh̃(x

∗
mt − xit, z

∗
m − zi),

K∗
h,vxz,mj = Kh(v

∗
mt − vjt, x

∗
mt − xjt, z

∗
m − zj), K∗

h̃,xz,mj
= Kh̃(x

∗
mt − xjt, z

∗
m − zj).

Proof of Theorem 4.2.1: Since f̂ ∗t,v|xz,i =
f̂∗t,vxz,i

f̂∗t,xz,i

, where

f̂ ∗t,vxz,i = (n∗H)−1

n∗∑
m=1

K∗
h,vxz,mi,

f̂ ∗t,xz,i = (n∗H̃)−1

n∗∑
m=1

K∗
h̃,xz,mi

,

we have

f ∗t,v|xz,i

f̂ ∗t,v|xz,i

= 1 + f ∗t,v|xz,i(
1

f̂ ∗t,v|xz,i

− 1

f ∗t,v|xz,i

)

= 1 +
f̂ ∗t,xz,i − f ∗t,xz,i

f ∗t,xz,i

+
f ∗t,vxz,i − f̂ ∗t,vxz,i

f ∗t,vxz,i

+
(f ∗t,vxz,if̂

∗
t,xz,i − f̂ ∗t,vxz,if

∗
t,xz,i)(f

∗
t,vxz,i − f̂ ∗t,vxz,i)

f ∗t,xz,if
∗
t,vxz,if̂

∗
t,vxz,i

. (C.5)
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Then

µ̂t(k) =
1

n

n∑
i=1

1(0 ≤ yit ≤ k)

f̂ ∗t (vit|xit, zi)
1τn,i =

1

n

n∑
i=1

1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

f ∗t (vit|xit, zi)

f̂ ∗t (vit|xit, zi)
1τn,i

=
1

n

n∑
i=1

1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
1τn,i +

1

n

n∑
i=1

1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

f ∗t,vxz,i − f̂ ∗t,vxz,i

f ∗t,vxz,i

1τn,i

+
1

n

n∑
i=1

1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

f̂ ∗t,xz,i − f ∗t,xz,i

f ∗t,xz,i

1τn,i

+
1

n

n∑
i=1

1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

(f ∗t,vxz,if̂
∗
t,xz,i − f̂ ∗t,vxz,if

∗
t,xz,i)(f

∗
t,vxz,i − f̂ ∗t,vxz,i)

f ∗t,xz,if
∗
t,vxz,if̂

∗
t,vxz,i

1τn,i

≡ µt1(k) + µt2(k) + µt3(k) + µt4(k).

Since ‖h′‖/τn → 0 and the kernel function K( · ) has a compact support, the

trimming function 1τn,i will ensure that all of the points which have boundary effects

are excluded from our estimated locations. By Lindeberg’s central limit theorem, we

have µt1(k)− E[1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)] = Op(n
−1/2).

We can see that µt2(k) and µt3(k) can be written as a second-order U-statistics.

By similar argument as in proving (A.32) and (A.33) in Khan and Lewbel (2007),

we have that

µt2(k) = − n

n∗
1

n

n∑
i=1

E[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,vxz,i

f ∗t,vxz,i

|vit = v∗it, xit = x∗it, zi = z∗i ]

+E[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
] + op(n

−1/2),

µt3(k) =
n

n∗
1

n

n∑
i=1

E[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,xz,i

f ∗t,xz,i

|xit = x∗it, zi = z∗i ]− E[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
]

+op(n
−1/2).
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For µt4(k), we have

E(‖µt4(k)‖)

≤ E

(
‖1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

(f ∗t,vxz,if̂
∗
t,xz,i − f̂ ∗t,vxz,if

∗
t,xz,i)(f

∗
t,vxz,i − f̂ ∗t,vxz,i)

f ∗t,xz,if
∗
t,vxz,if̂

∗
t,vxz,i

1τn,i‖
)

≤ E

(
‖1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
‖

∣∣∣∣∣
(f ∗t,vxz,if̂

∗
t,xz,i − f̂ ∗t,vxz,if

∗
t,xz,i)(f

∗
t,vxz,i − f̂ ∗t,vxz,i)

f ∗t,xz,if
∗
t,vxz,if̂

∗
t,vxz,i

1τn,i

∣∣∣∣∣

)
.

(C.6)

From Hansen (2008), we have

sup
(v,x,z)∈Ωvxz

|f̂ ∗t (v, x, z)− f ∗t (v, x, z)| = Op(‖h‖ν + (ln n∗)1/2(n∗H)−1/2),

sup
(x,z)∈Pxz(Ωvxz)

|f̂ ∗t (x, z)− f ∗t (x, z)| = Op(‖h̃‖ν + (ln n∗)1/2(n∗H̃)−1/2),

where Pxz( · ) is the projection of Cartesian product. Hence, we have that µt4(k) =

Op(‖h‖2ν + (ln n∗)(n∗H)−1 + ‖h‖ν‖h̃‖ν + (ln n∗)(n∗)−1H−1/2H̃−1/2).

Thus, we have that µ̂t(k)− µt(k) = Op(n
−1/2).

Since

1

µ̂t(k)
=

1

µt(k)
− µ̂t(k)− µt(k)

µt(k)2
+

(µ̂t(k)− µt(k))2

µ̂t(k)µt(k)2
, (C.7)

we have that

ζ̂(k) =
1

T

T∑
t=1

µ̂t(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f̂ ∗t (vit|xit, zi)
1τn,i
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=
1

T

T∑
t=1

µt(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f̂ ∗t (vit|xit, zi)
1τn,i

− 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2

1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f̂ ∗t (vit|xit, zi)
1τn,i

+
1

T

T∑
t=1

(µ̂t(k)− µt(k))2

µ̂t(k)µt(k)2

1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f̂ ∗t (vit|xit, zi)
1τn,i

≡ ζ1(k) + ζ2(k) + ζ3(k),

by (C.5), we have that

ζ1(k)

=
1

T

T∑
t=1

µt(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f̂ ∗t (vit|xit, zi)
1τn,i

=
1

T

T∑
t=1

µt(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

f ∗t (vit|xit, zi)

f̂ ∗t (vit|xit, zi)
1τn,i

=
1

T

T∑
t=1

µt(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
1τn,i

+
1

T

T∑
t=1

µt(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

f ∗t,vxz,i − f̂ ∗t,vxz,i

f ∗t,vxz,i

1τn,i

+
1

T

T∑
t=1

µt(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

f̂ ∗t,xz,i − f ∗t,xz,i

f ∗t,xz,i

1τn,i

+
1

T

T∑
t=1

µt(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

(f ∗t,vxz,if̂
∗
t,xz,i − f̂ ∗t,vxz,if

∗
t,xz,i)

f ∗t,xz,if
∗
t,vxz,i

×(f ∗t,vxz,i − f̂ ∗t,vxz,i)

f̂ ∗t,vxz,i

1τn,i

= ζ1,1(k) + ζ1,2(k) + ζ1,3(k) + ζ1,4(k).
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By Lindeberg’s central limit theorem and the same argument for the trimming

function as in the previous proof, we have ζ1,1(k) − T−1
∑T

t=1 µt(k)−1E[2vit1(0 ≤

yit ≤ k)/f∗t (vit|xit, zi)] = Op(n
−1/2).

For ζ1,2(k), we have that

ζ1,2(k) =
1

T

T∑
t=1

µt(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

f ∗t,vxz,i − f̂ ∗t,vxz,i

f ∗t,vxz,i

1τn,i

= − 1

T

T∑
t=1

µt(k)−1 1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

(n∗H)−1
∑n∗

j=1 K∗
h,vxz,ji − f ∗t,vxz,i

f ∗t,vxz,i

×1τn,i

= −(nTn∗H)−1

T∑
t=1

n∑
i=1

n∗∑
j=1

µt(k)−1 2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
(K∗

h,vxz,ji −Hf ∗t,vxz,i)

×(f ∗t,vxz,i)
−11τn,i.

ζ1,2(k) can be written as a second-order U-statistics. By the similar argument as in

proving (A.32) and (A.33) in Khan and Lewbel (2007), we have that

ζ1,2(k)

= − 1

n

n∑
i=1

T−1

T∑
t=1

µt(k)−1
(
E[

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,vxz,i

f ∗t,vxz,i

|vit = v∗it, xit = x∗it, zi = z∗i ]

−E[
2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
]
)

+ op(n
−1/2).
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Similarly, we have that

ζ1,3(k) =
1

n

n∑
i=1

T−1

T∑
t=1

µt(k)−1
(
E[

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,xz,i

f ∗t,xz,i

|xit = x∗it, zi = z∗i ]

−E[
2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
]
)

+ op(n
−1/2).

For ζ1,4(k), we have

E(‖ζ1,4(k)‖)

≤ E

(
‖µ(k)−1 2vit1(0 ≤ yit ≤ k)

f∗t (vit|xit, zi)
(f∗t,vxz,if̂

∗
t,xz,i − f̂∗t,vxz,if

∗
t,xz,i)(f

∗
t,vxz,i − f̂∗t,vxz,i)

f∗t,xz,if
∗
t,vxz,if̂

∗
t,vxz,i

1τn,i‖
)

≤ E

(
‖µ(k)−1 2vit1(0 ≤ yit ≤ k)

f∗t (vit|xit, zi)
‖

∣∣∣∣∣
(f∗t,vxz,if̂

∗
t,xz,i − f̂∗t,vxz,if

∗
t,xz,i)(f

∗
t,vxz,i − f̂∗t,vxz,i)

f∗t,xz,if
∗
t,vxz,if̂

∗
t,vxz,i

1τn,i

∣∣∣∣∣

)
.

Similar as (C.6), we have that ζ1,4(k) = Op(‖h‖2ν + (ln n∗)(n∗H)−1 + ‖h‖ν‖h̃‖ν +

(ln n∗)(n∗)−1H−1/2H̃−1/2).

For ζ2(k), we have

ζ2(k) = − 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2

1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f̂ ∗t (vit|xit, zi)
1τn,i

= − 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2

1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
1τn,i

− 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2

1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

f̂ ∗t,xz,i − f ∗t,xz,i

f ∗t,xz,i

1τn,i

− 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2

1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

f ∗t,vxz,i − f̂ ∗t,vxz,i

f ∗t,vxz,i

1τn,i

− 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2

1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

(f ∗t,vxz,if̂
∗
t,xz,i − f̂ ∗t,vxz,if

∗
t,xz,i)

f ∗t,xz,if
∗
t,vxz,i
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×(f ∗t,vxz,i − f̂ ∗t,vxz,i)

f̂ ∗t,vxz,i

1τn,i

≡ ζ2,1(k) + ζ2,2(k) + ζ2,3(k) + ζ2,4(k).

Hence, we have

ζ2,1(k)

= − 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2

1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
1τn,i

= − 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2
E[2vit1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)]

− 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2

(
1

n

n∑
i=1

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
1τn,i − E[

2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
]

)

= − 1

T

T∑
t=1

µ̂t(k)− µt(k)

µt(k)2
E[2vit1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)] + Op(n

−1)

= − 1

T

T∑
t=1

µt,1(k)− µt(k) + µt,2(k) + µt,3(k)

µt(k)2
E[2vit1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)]

+Op(n
−1).

Also, we have ζ2,2(k) = Op(n
−1), and ζ2,3(k) = Op(n

−1). Since sup1≤t≤T ‖µ̂t(k)−

µt(k)‖ = Op(n
−1/2), similar as (C.6) we have ζ2,4(k) = op(n

−1/2). It is easy to see

that ζ3(k) = op(n
−1/2).

Hence, we have ζ̂(k)− ζ(k) = Op(n
−1/2).
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Next, we have that

γ̂ =
k − k′

ζ̂(k)− ζ̂(k′)

=
k − k′

ζ(k)− ζ(k′)
− (k − k′)

ζ̂(k)− ζ̂(k′)− (ζ(k)− ζ(k′))
(ζ(k)− ζ(k′))2

+(k − k′)

(
ζ̂(k)− ζ̂(k′)− (ζ(k)− ζ(k′))

)2

(ζ̂(k)− ζ̂(k′))(ζ(k)− ζ(k′))2

= γ − (k − k′)
ζ̂(k)− ζ̂(k′)− (ζ(k)− ζ(k′))

(ζ(k)− ζ(k′))2

+(k − k′)

(
ζ̂(k)− ζ̂(k′)− (ζ(k)− ζ(k′))

)2

(ζ̂(k)− ζ̂(k′))(ζ(k)− ζ(k′))2

by Theorem 4.1.2. Hence, by Lindeberg’s central limit theorem we obtain that

√
n(γ̂ − γ)

= −√n(k − k′)
ζ̂(k)− ζ̂(k′)− (ζ(k)− ζ(k′))

(ζ(k)− ζ(k′))2
+ op(1)

=
√

n
γ2

k − k′
[(ζ1,1(k

′)− ζ(k′) + ζ1,2(k
′) + ζ1,3(k

′) + ζ2,1(k
′))

−(ζ1,1(k)− ζ(k) + ζ1,2(k) + ζ1,3(k) + ζ2,1(k))] + op(1)

d→ N(0, Vγ),

where Vγ = E[ψt(k)2],

ψt(k) =
γ2

k − k′

[ 1

T

T∑
t=1

(
µt(k)−1ϕk(k)− φt(k)µt(k)−2ηt(k) + µt(k

′)−1ϕt(k
′)

−φt(k
′)µt(k

′)−2ηt(k
′)
)]

,
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ϕt(k) =
2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
− ηt(k)

−cE[
2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,vxz,i

f ∗t,vxz,i

|vit = v∗it, xit = x∗it, zi = z∗i ]

+cE[
2vit1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,xz,i

f ∗t,xz,i

|xit = x∗it, zi = z∗i ],

φt(k) =
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
− µt(k)

−cE[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,vxz,i

f ∗t,vxz,i

|vit = v∗it, xit = x∗it, zi = z∗i ]

+cE[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,xz,i

f ∗t,xz,i

|xit = x∗it, zi = z∗i ],

ηt(k) = E[2vit1(0 ≤ yit ≤ k)/f∗t (vit|xit, zi)].

This completes the proof of the first part of Theorem 4.2.1.

Next, we prove the second part of Theorem 4.2.1.

For z ∈ Ωz, let

An1(z) = (n∗TH ′)−1

n∗∑
j=1

T∑
t=1

x∗jt(x
∗
jt)

>K∗
h′,z,jz1τn,j1εn(z),

An2(z) = (nTH ′)−1

T∑
t=1

n∑
j=1

(
xjt

(yjt − vjtγ̂)1(0 ≤ yjt ≤ k)Kh′,z,jz

µ̂t(k, zj)f̂ ∗t,v|xz,j

)
1τn,j1εn(z).

Recall that

ỹjt =
(yjt − vjtγ)1(0 ≤ yjt ≤ k)/f∗t (vjt|xjt, zj)

E[1(0 ≤ yjt ≤ k)/f∗t (vjt|xjt, zj)|zj]

=
(yjt − vjtγ)1(0 ≤ yjt ≤ k)/f∗t (vjt|xjt, zj)

µt(k, zj)
.
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Using (C.5) and an equality similar as (C.7), we have that

θ̂LC(z)

= An1(z)−1An2(z)

= θ(z) +
(
An1(z)−1(nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)

f ∗t,v|xz,j

f̂ ∗t,v|xz,j

Kh′,z,jz1τn,j1εn(z)− θ(z)
)

+An1(z)−1(nTH ′)−1

T∑
t=1

n∑
j=1

xjt(ỹjt − E(ỹjt|xjt, zj))Kh′,z,jz

f ∗t,v|xz,j

f̂ ∗t,v|xz,j

1τn,j1εn(z)

−An1(z)−1(nTH ′)−1

T∑
t=1

n∑
j=1

xjtỹjt
µ̂t(k, zj)− µt(k, zj)

µt(k, zj)
Kh′,z,jz

f ∗t,v|xz,j

f̂ ∗t,v|xz,j

1τn,j1εn(z)

−An1(z)−1(nTH ′)−1

T∑
t=1

n∑
j=1

xjt
vjt1(0 ≤ yjt ≤ k)(γ̂ − γ)

µt(k, zj)f ∗t,v|xz,j

×Kh′,z,jz

f ∗t,v|xz,j

f̂ ∗t,v|xz,j

1τn,j1εn(z)

+An1(z)−1(nTH ′)−1

T∑
t=1

n∑
j=1

xjtỹjt
(µ̂t(k, zj)− µt(k, zj))

2

µ̂t(k, zj)µt(k, zj)

×Kh′,z,jz

f ∗t,v|xz,j

f̂ ∗t,v|xz,j

1τn,j1εn(z)

+An1(z)−1(nTH ′)−1

T∑
t=1

n∑
j=1

xjt
vjt1(0 ≤ yjt ≤ k)(γ̂ − γ)(µ̂t(k, zj)− µt(k, zj))

µt(k, zj)2f ∗t,v|xz,j

×Kh′,z,jz

f ∗t,v|xz,j

f̂ ∗t,v|xz,j

1τn,j1εn(z)

−An1(z)−1(nTH ′)−1

T∑
t=1

n∑
j=1

xjt
vjt1(0 ≤ yjt ≤ k)(γ̂ − γ)(µ̂t(k, zj)− µt(k, zj))

2

µ̂t(k, zj)µt(k, zj)2f ∗t,v|xz,j

×Kh′,z,jz

f ∗t,v|xz,j

f̂ ∗t,v|xz,j

1τn,j1εn(z)

≡ θ(z) + An3(z) + An1(z)−1An4(z) + An1(z)−1An5(z) + An1(z)−1An6(z) + An7(z).
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By Lemma C.1.5 we have uniformly in z ∈ Ωz,

An1(z)−1 = m(z)−1 + Op

(||h′||ν + (ln n∗)1/2(n∗H ′)−1/2
)
,

where m(z) = T−1
∑T

s=1 E∗[xjsx
>
js|zj = z]f ∗z (z).

Let mi = m(z∗i ). Then, we have that

β̂LC =
1

n∗

n∗∑
i=1

θ̂LC(z∗i )

= β +
1

n∗

n∗∑
i=1

g(z∗i ) +
1

n∗

n∗∑
i=1

An3(z
∗
i ) +

1

n∗

n∗∑
i=1

m−1
i

[
An4(z

∗
i ) + An5(z

∗
i )

+An6(z
∗
i ) + An7(z

∗
i )

]
+

1

n∗

n∗∑
i=1

An8(z
∗
i ) + ηn,

where ηn = Op

(||h′||ν + (ln n∗)1/2(n∗H ′)−1/2
)
Op(‖An4(z

∗
i )‖+‖An5(z

∗
i )‖+‖An6(z

∗
i )‖+

‖An7(z
∗
i )‖).

Since f̂ ∗t,v|xz,j =
f̂∗t,vxz,j

f̂∗t,xz,j

, where

f̂ ∗t,vxz,j = (n∗H)−1

n∗∑
m=1

K∗
h,vxz,mj and f̂ ∗t,xz,j = (n∗H̃)−1

n∗∑
m=1

K∗
h̃,xz,mj

,

we have

f ∗t,v|xz,j

f̂ ∗t,v|xz,j

= 1 + f ∗t,v|xz,j(
1

f̂ ∗t,v|xz,j

− 1

f ∗t,v|xz,j

)
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= 1 +
f̂ ∗t,xz,j − f ∗t,xz,j

f ∗t,xz,j

+
f ∗t,vxz,j − f̂ ∗t,vxz,j

f ∗t,vxz,j

+
(f ∗t,vxz,j f̂

∗
t,xz,j − f̂ ∗t,vxz,jf

∗
t,xz,j)

f ∗t,xz,jf
∗
t,vxz,j

×(f ∗t,vxz,j − f̂ ∗t,vxz,j)

f̂ ∗t,vxz,j

. (C.8)

Then, we have that

Bn1 =
1

n∗

n∗∑
i=1

An3(z
∗
i )

=
1

n∗

n∗∑
i=1

m−1
i T−1

T∑
t=1

(
n−1

n∑
j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
(H ′)−1Kh′,z,ji1τn,j

−(n∗)−1

n∗∑
j=1

x∗jt(x
∗
jt)

>θi(H
′)−1Kh′,z∗,ji1

∗
τn,j

)
1εn(z∗i )

+
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ji

× f̂ ∗t,xz,j − f ∗t,xz,j

f ∗t,xz,j

1τn,j1εn(z∗i )

+
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ji

×f ∗t,vxz,j − f̂ ∗t,vxz,j

f ∗t,vxz,j

1τn,j1εn(z∗i )

+
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ji

×(f ∗t,vxz,j f̂
∗
t,xz,j − f̂ ∗t,vxz,jf

∗
t,xz,j)

f ∗t,xz,jf
∗
t,vxz,j

(f ∗t,vxz,j − f̂ ∗t,vxz,j)

f̂ ∗t,vxz,j

1τn,j1εn(z∗i )

+Op

(
(||h′||ν + (ln n∗)1/2(n∗H ′)−1/2)2

)

≡ Bn1,1 + Bn1,2 + Bn1,3 + Bn1,4.
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First we consider Bn1,1. We have

Bn1,1 =
1

n∗

n∗∑
i=1

m−1
i T−1

T∑
t=1

(
n−1

n∑
j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
(H ′)−1Kh′,z,ji1τn,j

−(n∗)−1

n∗∑
j=1

x∗jt(x
∗
jt)

>θi(H
′)−1Kh′,z∗,ji1

∗
τn,j

)
1εn(z∗i ).

Further, Bn1,1 can be written as a second order U-statistic.

Bn1,1 = (nn∗)−1n∗(n∗ − 1)

2

1

n∗(n∗ − 1)

n∗∑
i=1

n∗∑

j 6=i

Hn1,ij ≡ (nn∗)−1n∗(n∗ − 1)

2
Un1,

where

Hn1,ij = (TH ′)−1

T∑
t=1

[m−1
i xjtx

>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
1(i ≤ n)Kh′,z,ji1τn,j1εn(z∗i )

− n

n∗
m−1

i x∗jt(x
∗
jt)

>θiKh′,z∗,ji1
∗
τn,j1εn(z∗i ) + m−1

j xitx
>
itθi

P ∗(y∗it ≥ 0|zi)

P ∗(y∗it ≥ 0|xit, zi)

×1(j ≤ n)Kh′,z,ji1τn,i1εn(z∗j )−
n

n∗
m−1

j x∗it(x
∗
it)
>θjKh′,z∗,ji1

∗
τn,i1εn(z∗j ).

Since εn > τn and ‖h′‖/(εn−τn) → 0 and the kernel function K( · ) has a compact

support, the trimming functions 1τn,j and 1εn(zi) will ensure that all of the points

which have boundary effects are excluded from our estimated locations. We have

E[Hn1,ij] = Op(‖h′‖ν).
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Also, we have

E




(
1

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

)(
1

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

)>


= V ar

[
1

n

n∑
i=1

[Hn1,i − E(Hn1,i)]

]

= O(n−1‖h′‖2ν), (C.9)

where Hn1,i = E[Hn1,ij|wi], wi = (x>i1, . . . , x
>
iT , zi),

E




(
1

n∗

n∗∑
i=1

[H∗
n1,i − E(H∗

n1,i)]

)(
1

n∗

n∗∑
i=1

[H∗
n1,i − E(H∗

n1,i)]

)>
 = O((n∗)−1‖h′‖2ν),

where H∗
n1,i = E[Hn1,ij|w∗

i ], w∗
i = ((x∗i1)

>, . . . , (x∗iT )>, z∗i ), and

V ar

[
2

n∗(n∗ − 1)

n∗∑
i=1

n∗∑
j>i

[
Hn1,ij −Hn1,i −Hn1,j −H∗

n1,i −H∗
n1,j + E(Hn1,ij)

]
]

=
4

(n∗)2(n∗ − 1)2

n∗∑
i=1

n∗∑
j>i

V ar [Hn1,ij −Hn1,i −Hn1,j + E(Hn1,ij)]

= O((n∗)−2H ′−1‖h′‖2). (C.10)

Thus, Bn1,1 = Op(‖h′‖ν + (n∗H ′1/2)−1‖h′‖).

Let

Bn2 = Bn1,2 + Bn1,3 + Bn1,4.
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Hence,

Bn2 =
1
n∗

n∗∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)
P ∗(y∗jt ≥ 0|xjt, zj)

Kh′,z,ji

f̂∗t,vxz,j − f∗t,vxz,j

f∗t,vxz,j

×1τn,j1εn(z∗i )

+
1
n∗

n∗∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)
P ∗(y∗jt ≥ 0|xjt, zj)

Kh′,z,ji

f∗t,xz,j − f̂∗t,xz,j

f∗t,xz,j

×1τn,j1εn(z∗i )

+
1
n∗

n∗∑

i=1

m−1
i (nTH ′)−1

T∑

t=1

n∑

j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)
P ∗(y∗jt ≥ 0|xjt, zj)

Kh′,z,ji

×(f̂∗t,vxz,jf
∗
t,xz,j − f∗t,vxz,j f̂

∗
t,xz,j)

f∗t,xz,jf
∗
t,vxz,j

(f∗t,vxz,j − f̂∗t,vxz,j)

f̂∗t,vxz,j

1τn,j1εn(z∗i )

≡ Bn2,1 + Bn2,2 + Bn2,3.

First, we consider Bn2,1. We have

Bn2,1 =
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ji

× f̂ ∗t,vxz,j − f ∗t,vxz,j

f ∗t,vxz,j

1τn,j1εn(z∗i )

=
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtx
>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ji

×(n∗H)−1
∑n∗

k=1 K∗
h,vxz,kj − f ∗t,vxz,j

f ∗t,vxz,j

1τn,j1εn(z∗i )

= (n(n∗)2TH ′H)−1

n∗∑
i=1

n∑
j=1

n∗∑

k=1

T∑
t=1

m−1
i xjtx

>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ji

× (
K∗

h,vxz,kj −Hf ∗t,vxz,j

)
(f ∗t,vxz,j)

−11τn,j1εn(z∗i )

= (n(n∗)2TH ′H)−1

n∗∑
i=1

T∑
t=1

m−1
i xitx

>
itθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ii

× (
K∗

h(0)−Hf ∗t,vxz,i

)
(f ∗t,vzx,i)

−11τn,j1εn(z∗i )
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+(n(n∗)2TH ′H)−1

n∗∑
i=1

n∗∑

k 6=i

T∑
t=1

m−1
i xitx

>
itθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ii

× (
K∗

h,vxz,ki −Hf ∗t,vxz,i

)
(f ∗t,vzx,i)

−11τn,j1εn(z∗i )

+(n(n∗)2TH ′H)−1

n∗∑
i=1

n∑

j 6=i

T∑
t=1

m−1
i xjtx

>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ji

× (
K∗

h(0)−Hf ∗t,vxz,j

)
(f ∗t,vxz,j)

−11τn,j1εn(z∗i )

+(n(n∗)2TH ′H)−1

n∗∑
i=1

n∑

j 6=i

T∑
t=1

m−1
i xjtx

>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ji

× (
K∗

h,vxz,ij −Hf ∗t,vxz,j

)
(f ∗t,vxz,j)

−11τn,j1εn(z∗i )

+(n(n∗)2TH ′H)−1
∑∑ ∑

i6=j 6=k

T∑
t=1

m−1
i xjtx

>
jtθj

P ∗(y∗jt ≥ 0|zj)

P ∗(y∗jt ≥ 0|xjt, zj)
Kh′,z,ji

× (
K∗

h,vxz,kj −Hf ∗t,vxz,j

)
(f ∗t,vxz,j)

−11τn,j1εn(z∗i )

≡ Bn2,1,1 + Bn2,1,2 + Bn2,1,3 + Bn2,1,4 + Bn2,1,5.

It is easy to see that Bn2,1,1 = Op((n
∗)2H ′H)−1), Bn2,1,2, Bn2,1,3 and Bn2,1,4 can

be written as second order U-statistics, and Bn2,1,5 can be written a third order

U-statistic. Also, by the Hoeffding decomposition, we have that

Bn2,1,2 = Op(‖h‖ν(n∗H ′)−1), Bn2,1,3 = Op((n
∗H)−1), andBn2,1,4 = Op(‖h‖ν(n∗)−1).

By the theory of two sample U-statistics, we have that

Bn2,1,5

=
1

n∗

n∗∑
i=1

T−1

T∑
t=1

(
m−1

i xitx
>
itθi

P ∗(y∗it ≥ 0|zi)

P ∗(y∗it ≥ 0|xit, zi)
f ∗z (z∗i )− E∗[P ∗(y∗it ≥ 0|zi)θi]

)

+Op(‖h‖ν + (n∗)−1 + (n3/2H ′1/2H1/2)−1‖h‖).
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Hence, we have that

Bn2,1

=
1

n∗

n∗∑
i=1

T−1

T∑
t=1

(
m−1

i xitx
>
itθi

P ∗(y∗it ≥ 0|zi)

P ∗(y∗it ≥ 0|xit, zi)
f ∗z (z∗i )− E∗[P ∗(y∗it ≥ 0|zi)θi]

)

+Op

(
(n2H ′H)−1 + ‖h‖ν(nH ′)−1 + (nH)−1 + ‖h‖ν + n−1

+(n3/2H ′1/2H1/2)−1‖h‖
)
. (C.11)

Similarly, we can show that

Bn2,2

= − 1

n∗

n∗∑
i=1

T−1

T∑
t=1

(
m−1

i xitx
>
itθi

P ∗(y∗it ≥ 0|zi)

P ∗(y∗it ≥ 0|xit, zi)
f ∗z (z∗i )− E∗[P ∗(y∗it ≥ 0|zi)θi]

)

+Op((n
2H ′H̃)−1 + ‖h̃‖ν(nH ′)−1 + (nH̃)−1 + ‖h̃‖ν + n−1

+(n3/2H ′1/2H̃1/2)−1‖h̃‖). (C.12)

Similar as the derivation of Bn1,4, we have Bn2,3 = Op(‖h‖2ν + (ln n)(nH)−1 +

‖h‖ν‖h̃‖ν + (ln n)n−1H−1/2H̃−1/2).

Denote

ξjt = ỹjt − E(ỹjt|xjt, zj).

By (C.8), we have

Bn3 =
1

n∗

n∗∑
i=1

m−1
i An4(z

∗
i )
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=
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjt(ỹjt − E(ỹjt|xjt, zj))Kh′,z,ji

f ∗t,v|xz,j

f̂ ∗t,v|xz,j

1τn,j1εn(z∗i )

=
1

n∗

n∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtξjtKh′,z,ji1τn,j1εn(z∗i )

+
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtξjtKh′,z,ji

f̂ ∗t,xz,j − f ∗t,xz,j

f ∗t,xz,j

1τn,j1εn(z∗i )

+
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtξjtKh′,z,ji

f ∗t,vxz,j − f̂ ∗t,vxz,j

f ∗t,vxz,j

1τn,j1εn(z∗i )

+
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtξjtKh′,z,ji

(f ∗t,vxz,j f̂
∗
t,xz,j − f̂ ∗t,vxz,jf

∗
t,xz,j)

f ∗t,xz,jf
∗
t,vxz,j

×(f ∗t,vxz,j − f̂ ∗t,vxz,j)

f̂ ∗t,vxz,j

1τn,j1εn(z∗i )

≡ Bn3,1 + Bn3,2 + Bn3,3 + Bn3,4.

Then E[Bn3,1] = 0. We have

Bn3,1 =
1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtξjtKh′,z,ji1τn,j1εn(z∗i ).

Moreover, we can decompose Bn3,1 into two terms

Bn3,1 = Bn3,1,1 + Bn3,1,2,

where

Bn3,1,1 = (nn∗TH ′)−1

n∗∑
i=1

T∑
t=1

m−1
i xitξitKh′,z,ii1τn,i1εn(z∗i ),
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Bn3,1,2 = (nn∗TH ′)−1

n∗∑
i=1

n∑

j 6=i

T∑
t=1

m−1
i xjtξjtKh′,z,ji1τn,j1εn(z∗i ).

It is easy to see that E[Bn3,1,1] = 0 and E[||Bn3,1,1||2] = (n2(n∗)2H ′2)−1O(n∗) =

O(((n∗)3H ′2)−1). Hence, Bn3,1,1 = Op(((n
∗)3/2H ′)−1).

Also, Bn3,1,2 can be written as a second order U-statistic.

Bn3,1,2 = (nn∗)−1n∗(n∗ − 1)

2

1

n∗(n∗ − 1)

n∗∑
i=1

n∗∑

j 6=i

Hn3,ij ≡ (nn∗)−1n∗(n∗ − 1)

2
Un3,

where

Hn3,ij = (TH ′)−1

T∑
t=1

(m−1
i xjtξjt1τn,j1εn(z∗i )Kh′,ij1(j ≤ n) + m−1

j xitξit1τn,i1εn(z∗j )

×Kh′,ji1(i ≤ n)).

Then, by using two sample U-statistics, we have

Un3 =
1

n∗T

n∗∑
i=1

T∑
t=1

m−1
i fz(z

∗
i )xitξit1τn,i + Op(‖h′‖ν+1/

√
n∗ + (n∗H ′1/2)−1).

(C.13)

Then we consider Bn3,2, Bn3,3, and Bn3,4. Similar as (C.11) and (C.12), we have

that

Bn3,2 =
1

n∗T

n∗∑
i=1

T∑
t=1

m−1
i f ∗z (z∗i )x

∗
itE[ξit|xit = x∗it, zi = z∗i ]1τn,i
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+Op((n
2H ′H̃)−1 + ‖h̃‖ν(nH ′)−1 + (nH̃)−1 + ‖h̃‖ν + (n3/2H ′1/2H̃1/2)−1‖h̃‖)

= Op((n
2H ′H̃)−1 + ‖h̃‖ν(nH ′)−1 + (nH̃)−1 + ‖h̃‖ν + (n3/2H ′1/2H̃1/2)−1‖h̃‖),

and

Bn3,3 = − 1

n∗T

n∗∑
i=1

T∑
t=1

m−1
i f ∗z (z∗i )x

∗
itE[ξit|vi = v∗i , xit = x∗it, zi = z∗i ]1τn,i

+Op

(
(n2H ′H)−1 + ‖h‖ν(nH ′)−1 + (nH)−1 + ‖h‖ν + n−1

+(n3/2H ′1/2H1/2)−1‖h‖
)

= − 1

n∗T

n∗∑
i=1

T∑
t=1

m−1
i f ∗z (z∗i )x

∗
it(E[ỹit|vi = v∗i , xit = x∗it, zi = z∗i ]

−E[ỹit|xit = x∗it, zi = z∗i ])1τn,i + Op

(
(n2H ′H)−1 + ‖h‖ν(nH ′)−1

+(nH)−1 + ‖h‖ν + n−1 + (n3/2H ′1/2H1/2)−1‖h‖
)
,

since E[ξit|xit, zi] = 0.

Similar as the derivation of Bn1,4, we have Bn3,4 = Op(‖h‖2ν + (ln n)(nH)−1 +

‖h‖ν‖h̃‖ν + (ln n)n−1H−1/2H̃−1/2).

Moreover, by Cauchy-Schwarz inequality, we have that

E‖ 1

nT

n∑
i=1

T∑
t=1

(m−1
i fz(zi)xitξit)

⊗2(1− 1τn,i)‖

≤ {E(‖m−1
i fz(zi)xitξit‖2)P ((vi, xi, zi) ∈ Ωvxz)}1/2.
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P ((vit, xit, zi) ∈ Ωvxz) is the probability that (vit, xit, zi) is within a distance τn of the

boundary ∂Svxz of Svxz. Since the joint density function fvxz(vit, xit, zi) of (vit, xit, zi)

is bounded and the volume of the set that is within a distance τn of ∂Svxz is pro-

portional to τn, we have that P ((vit, xit, zi) ∈ Ωvxz) = O(τn). Hence, we have

V ar( 1√
nT

∑n
i=1

∑T
t=1 m−1

i fz(zi)xitξit1τn,i) = V ar( 1√
nT

∑n
i=1

∑T
t=1 m−1

i fz(zi)xitξit) +

o(1).

Further, we have

µ̂t(k, zi) =
(nH ′)−1

∑n
j=1 1(0 ≤ yjt ≤ k)Kh′,ji/f̂

∗
t (vjt|xjt, zj)

(nH ′)−1
∑n

j=1 Kh′,ji

=
(nH ′)−1

∑n
j=1 1(0 ≤ yjt ≤ k)Kh′,ji/f

∗
t (vjt|xjt, zj)

(nH ′)−1
∑n

j=1 Kh′,ji

f ∗t (vjt|xjt, zj)

f̂ ∗t (vjt|xjt, zj)

= (nH ′)−1

n∑
j=1

f(zi)
−11(0 ≤ yjt ≤ k)Kh′,ji

f ∗t (vjt|xjt, zj)

+(nH ′)−1

n∑
j=1

f(zi)
−11(0 ≤ yjt ≤ k)Kh′,ji

f ∗t (vjt|xjt, zj)

f ∗t,vxz,j − f̂ ∗t,vxz,j

f ∗t,vxz,j

+(nH ′)−1

n∑
j=1

f(zi)
−11(0 ≤ yjt ≤ k)Kh′,ji

f ∗t (vjt|xjt, zj)

f̂ ∗t,xz,j − f ∗t,xz,j

f ∗t,xz,j

+(nH ′)−1

n∑
j=1

f(zi)
−11(0 ≤ yjt ≤ k)Kh′,ji

f ∗t (vjt|xjt, zj)

(f ∗t,vxz,j f̂
∗
t,xz,j − f̂ ∗t,vxz,jf

∗
t,xz,j)

f ∗t,xz,jf
∗
t,vxz,j

×(f ∗t,vxz,j − f̂ ∗t,vxz,j)

f̂ ∗t,vxz,j

+ op(n
1/2)

≡ µt1(k, zi) + µt2(k, zi) + µt3(k, zi) + µt4(k, zi).
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We can see that µt2(k, zi) and µt3(k, zi) can be written as a second-order U-

statistics. By similar argument as in proving (A.32) and (A.33) in Khan and Lewbel

(2007), we have that

µt2(k, zi) = − n

n∗
1

n

n∑
i=1

E[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,vxz,i

f ∗t,vxz,i

|vit = v∗it, xit = x∗it, zi = z∗i ]

+E[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
|zi] + op(n

−1/2),

µt3(k, zi) =
n

n∗
1

n

n∑
i=1

E[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,xz,i

f ∗t,xz,i

|xit = x∗it, zi = z∗i ]

−E[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
|zi] + op(n

−1/2).

Further, we have that µt4(k, zi) = Op(‖h‖2ν + (ln n∗)(n∗H)−1 + ‖h‖ν‖h̃‖ν +

(ln n∗)(n∗)−1H−1/2H̃−1/2).

We have

Bn4 = − 1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtỹjt
µ̂t(k, zj)− µt(k, zj)

µt(k, zj)
Kh′,z,jz

×
f ∗t,v|xz,j

f̂ ∗t,v|xz,j

1τn,j1εn(z∗i )

= − 1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjtỹjt

×µt1(k, zj)− µt(k, zj) + µt2(k, zj) + µt3(k, zj)

µt(k, zj)
Kh′,z,ji1τn,j1εn(z∗i )

+op((n
∗)−1/2).
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By U-statistic Hoeffding decomposition, we have that

Bn4 =
1

n∗

n∗∑
i=1

T−1

T∑
t=1

m−1
i E∗[xitx

>
it |zi = z∗i ]θifz(z

∗
i )φt(k, z∗i )1τn,i + op((n

∗)−1/2),

where

φt(k, z∗i ) =
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)
− µt(k, z∗i )

−cE[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,vxz,i

f ∗t,vxz,i

|vit = v∗it, xit = x∗it, zi = z∗i ]

+cE[
1(0 ≤ yit ≤ k)

f ∗t (vit|xit, zi)

ft,xz,i

f ∗t,xz,i

|xit = x∗it, zi = z∗i ].

Also, let

Bn5 = − 1

n∗

n∗∑
i=1

m−1
i (nTH ′)−1

T∑
t=1

n∑
j=1

xjt
vjt1(0 ≤ yjt ≤ k)(γ̂ − γ)

µt(k, zj)f ∗t,v|xz,j

Kh′,z,ji

×
f ∗t,v|xz,j

f̂ ∗t,v|xz,j

1τn,j1εn(z∗i ).

By using the projection of U-statistics, we have that

Bn5 =
1

n∗

n∗∑
i=1

T−1

T∑
t=1

m−1
i fz(z

∗
i )

(
1

2γ2
(k2E[xit|zi = z∗i ]− kE[xitx

>
it |zi = z∗i ]θ(z

∗
i ))

)

× ψt(k)

µt(k, z∗i )
1τn,i + op((n

∗)−1/2).
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Therefore, we have that

√
n∗(β̂LC − β) =

1√
n∗

n∗∑
i=1

g(z∗i )−
1√
n∗T

n∗∑
i=1

T∑
t=1

m−1
i fz(z

∗
i )xitξit1τn,i

− 1√
n∗T

n∗∑
i=1

T∑
t=1

m−1
i f ∗z (z∗i )x

∗
it(E[ỹit|vi = v∗i , xit = x∗it, zi = z∗i ]

−E[ỹit|xit = x∗it, zi = z∗i ])1τn,i

+
1√
n∗

n∗∑
i=1

T−1

T∑
t=1

m−1
i E∗[xitx

>
it |zi = z∗i ]θifz(z

∗
i )φt(k, z∗i )1τn,i

+
1√
n∗

n∗∑
i=1

T−1

T∑
t=1

m−1
i fz(z

∗
i )

( 1

2γ2
(k2E[xit|zi = z∗i ]

−kE[xitx
>
it |zi = z∗i ]θ(z

∗
i ))

) ψt(k)

µt(k, z∗i )
1τn,i

+Op(δn)

d→ N(0, VLC)

by the Lindeberg central limit theorem, where

VLC = E∗(g(z∗i ))
2

+E∗
(

T−1

T∑
t=1

[
m−1

i fz(z
∗
i )xitξit

+m−1
i f ∗z (z∗i )x

∗
it

(
E[ỹit|vi = v∗i , xit = x∗it, zi = z∗i ]− E[ỹit|xit = x∗it, zi = z∗i ]

)

−m−1
i E∗[xitx

>
it |zi = z∗i ]θifz(z

∗
i )φt(k, z∗i )

−m−1
i fz(z

∗
i )

(
1

2γ2
(k2E[xit|zi = z∗i ]− kE[xitx

>
it |zi = z∗i ]θ(z

∗
i ))

)
ψt(k)

µt(k, z∗i )

])2

,
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δn =
√

n‖h′‖ν +
√

n(nH ′1/2)−1‖h′‖+
√

nn−1/2‖h′‖ν

+
√

n(n3/2H ′1/2H1/2)−1‖h′‖‖h‖+
√

n(n3/2H ′1/2H1/2)−1‖h′‖‖h̃‖

+
√

n(ln n)(nH)−1 +
√

n‖h‖ν‖h̃‖ν +
√

n(ln n)n−1H−1/2H̃−1/2 +
√

n(n2H ′H)−1

+
√

n‖h‖ν(nH ′)−1 +
√

n(nH)−1 +
√

n‖h‖ν +
√

nn−1

+
√

n(n3/2H ′1/2H1/2)−1‖h‖+
√

n(n2H ′H̃)−1 +
√

n‖h̃‖ν(nH ′)−1 +
√

n(nH̃)−1

+
√

n‖h̃‖ν +
√

n(n3/2H ′1/2H̃1/2)−1‖h̃‖+
√

n‖h′‖ν+1/
√

n +
√

n(nH ′1/2)−1

+
√

nηn = op(1),

and

√
nηn =

√
nOp

(
||h′||ν + (ln n)1/2(nH ′)−1/2

)
Op(‖h′‖ν + (nH ′)−1/2) = op(1).

Lemma C.1.5. Define An1(z) = 1
n∗TH′

∑n∗
j=1

∑T
s=1 x∗js(x

∗
js)

>Kh′,z∗j z, and m(z) =

T−1
∑T

s=1 E∗[xjsx
>
js|zj = z]f ∗z (z), where Kh′,z∗j z =

∏q
l=1 k

(
z∗jl−zl

hl

)
, then under As-

sumptions B5-B8,

An1(z)−1 = m(z)−1 + Op

(||h′||ν + (ln n∗)1/2(n∗H ′)−1/2
)
,

uniformly in z ∈ Ωz, where Ωz = {z ∈ Sz : minl∈{1,...,q} |zl − z0,l| ≥ εn for some z0 ∈

∂Sz}, ∂Sz is the boundary of the compact set Sz, εn → 0 and ‖h′‖/εn → 0.

Proof: First, we have

E∗[An1(z)] = m(z) + O (‖h′‖ν) , (C.14)
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uniformly in z ∈ Ωz. Following similar arguments used in Masry (1996) when deriving

uniform convergence rates for nonparametric kernel estimators, we know that

An1(z)− E∗[An1(z)] = Op

(
(ln n∗)1/2

(n∗H ′)1/2

)
, (C.15)

uniformly in z ∈ Ωz.

Combining (C.14) and (C.15) we obtain

An1(z)−m(z) = Op

(
||h′||ν + (ln n∗)1/2 (n∗H ′)−1/2

)
, (C.16)

uniformly in z ∈ Ωz.

Using (C.16) we obtain

An1(z)−1 = [m(z) + An1(z)−m(z)]−1

= m(z)−1 −m(z)−1 [An1(z)−m(z)] m(z)−1 + Op

(‖An1(z)−m(z))‖2)

= m(z)−1 + Op

(||h′||ν + (ln n∗)1/2(n∗H ′)−1/2
)
,

which completes the proof of Lemma C.1.5.


