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ABSTRACT

Limited Dependent Variable Correlated Random Coefficient Panel Data Models.
(August 2012 )
Zhongwen Liang, B.S., Wuhan University; M.S., Wuhan University
Co-Chairs of Advisory Committee: Dr. Qi Li Dr. Joel Zinn

In this dissertation, I consider linear, binary response correlated random coeffi-
cient (CRC) panel data models and a truncated CRC panel data model which are
frequently used in economic analysis. I focus on the nonparametric identification
and estimation of panel data models under unobserved heterogeneity which is cap-
tured by random coefficients and when these random coefficients are correlated with
regressors.

For the analysis of linear CRC models, I give the identification conditions for
the average slopes of a linear CRC model with a general nonparametric correlation
between regressors and random coefficients. I construct a y/n consistent estimator
for the average slopes via varying coefficient regression.

The identification of binary response panel data models with unobserved hetero-
geneity is difficult. I base identification conditions and estimation on the framework
of the model with a special regressor, which is a major approach proposed by Lewbel
(1998, 2000) to solve the heterogeneity and endogeneity problem in the binary re-
sponse models. With the help of the additional information on the special regressor,
I can transfer a binary response CRC model to a linear moment relation. I also con-
struct a semiparametric estimator for the average slopes and derive the \/n-normality
result.

For the truncated CRC panel data model, I obtain the identification and estima-

tion results based on the special regressor method which is used in Khan and Lewbel
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v
(2007). T construct a y/n consistent estimator for the population mean of the random
coefficient. I also derive the asymptotic distribution of my estimator.

Simulations are given to show the finite sample advantage of my estimators.
Further, I use a linear CRC panel data model to reexamine the return from job
training. The results show that my estimation method really makes a difference,
and the estimated return of training by my method is 7 times as much as the one
estimated without considering the correlation between the covariates and random

coefficients. It shows that on average the rate of return of job training is 3.16% per

60 hours training.
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1. INTRODUCTION

Recently, the correlated random coefficient model has drawn much attention. As
stated in Heckman et al. (2010), “The correlated random coefficient model is the
new centerpiece of a large literature in microeconometrics”. In this dissertation, first

I consider linear CRC panel data models in the form of
Yir = T3 + Wi, (i=1,...,mt=1,.,T) (1.1)

where x;; denotes regressors with random coefficient (;, and wu; is the error term.

Also, I consider binary response CRC panel data models in the form of
yi = 1(vg,y + 2 B; + ugy > 0), (t=1,.,n;t=1,...,7T) (1.2)

where 1(-) is the indicator function, v; denotes regressors with constant coefficient
v, x;; denotes regressors with random coefficient [3;, and u;; is the error term. Finally,

I consider a truncated CRC panel data model

i = iy + 2B+ v, (i=1,..nt=1,..T)

Yir = Yulys >0, (1.3)

where v; denotes regressors with constant coefficient v, x; denotes regressors with
random coefficient [3;, and u; is the error term. Here, x;; can include 1 as a com-
ponent. Thus, the panel data models with fixed effects corresponding to each model
are special cases of these models. I allow the general correlation between the random
coefficient 3; and the regressor x;;. I focus on the nonparametric identification and
estimation of the mean of random slope [; in these models and related transformed

models, which will be more specific in later sections.

This dissertation follows the style of Journal of Econometrics.
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1.1 Linear Models

Linear models are among the mostly used models. The reason is its simplicity
and direct economic interpretability. However, for most empirical applications the
plain linear models suffer from the lack of flexibility, e.g., the traditional estimators
will not be consistent under endogeneity and heterogeneity problem. Recently, corre-
lated random coefficient models are proposed to deal with unobserved heterogeneity
problem. Further, with panel data available, we can capture the endogeneity and
heterogeneity more easily. In this dissertation, I consider the linear CRC panel data
models first. This will also serve as the foundation for the methods I will use for the
binary and truncated models.

We can motivate the usefulness of the linear CRC panel data models by an
empirical application. In labor economics, we are interested in the return from the
job training. We regress the logarithm of wage on a job training variable which is
the accumulated hours spent on the job training. Then its coefficient is the rate of
return from the training. We know that other things being the same, still different
people will get different payoffs even they took same amount of training. This means
that there exists unobserved heterogeneity. One way to capture it is to use a random
coefficient model. So we will have the coefficient of the job training variable to be
random. From the theory of human capital, we know that the marginal return from
the job training is diminishing as the level of job training increases. So there is a
negative correlation between the job training variable and its coefficient which is
the rate of return from the job training. Moreover, there is a selection problem.
Individuals with lower marginal return may receive less training, which means there
is also a positive correlation. So there must exist correlation between the job training
variable and its random coefficient. Also the panel data model gives us the advantage
to capture the correlation between regressors and other unobserved heterogeneity by
the fixed effects term. A linear CRC panel data model is a good candidate for this
type of question.
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There is a large literature about the CRC model. Heckman and Vytlacil (1998)
is among the very first papers. Motivated by the diminishing return of schooling,
they discussed the instrumental variable methods for the cross-sectional setting of
CRC model. Wooldridge (2003) gave weaker conditions for the two-stage plug-in
estimator proposed by Heckman and Vytlacil (1998). Wooldridge (2005) gave a
sufficient condition for the fixed effects estimator to be consistent. Murtazashvili and
Wooldridge (2008) investigates the fixed effects instrumental variables estimation for
the linear CRC panel data model.

Recently, there is a growing literature on CRC models. Graham and Powell
(2012) discuss the identification and estimation of average partial effects in a class
of “irregular” correlated random coefficient panel data models using different infor-
mation of agents from subpopulations, so called “stayers” and “movers”. Due to the
irregularity, they get an estimator with slower than y/n convergence rate and the
normal limiting distribution. Heckman et al. (2010) and Heckman and Schmierer
(2010) investigate the tests of the CRC model.

I discuss the nonparametric identification and estimation of the population mean
of the random coefficient 3; for the linear CRC panel data models in Chapter 2. I

construct a /n consistent estimator and derive its asymptotic normality.

1.2 Binary Response Models

Binary choice panel data models are widely used by applied researchers. One rea-
son is its direct economic interpretability. Another reason is that given the advantage
of panel data with multiple observations of the same individual over several time pe-
riods, it is possible to take into account unobserved heterogeneity. The common
approach is to include an individual-specific heterogenous effect variable additively,
which leads to a correlated random effects model or a fixed effects model. The ad-
vantage of this approach is that we can eliminate the unobservable variable by taking

the difference between different time periods and get the fixed effects estimator for

www.manaraa.com



linear models easily, see e.g. Arellano (2003), Hsiao (2003). This also resolves the
incidental parameter problem in linear panel data models. The method of taking
difference can also be extended to nonlinear panel data models in certain extent, see
Bonhonmme (2012). Though it is convenient to deal with unobserved heterogeneity
additively, economic models imply many different non-additive forms, see Browning
and Carro (2007), Imbens (2007). Among them, one class is the random coefficient
model which arises from the demand analysis with the consideration of the individual
heterogeneity.

Random coefficient models have the multiplicative individual heterogeneity. They
are popular in empirical analysis of treatment effects and the demand of products.
In the analysis of treatment effect, under certain circumstances, the binary choice
fixed-effects model can be transferred to a linear random coefficient model with the
average treatment effect being the mean of a random coefficient. For instance, in
one of the commenting papers for Angrist (2001), Hahn (2001) gives an example
on this transformation and discusses the consistency of the fixed effects estimator.
Wooldridge (2005) further allows the correlation between regressors and random
coefficients and gives the conditions that assure the consistency of the fixed effects
estimator. Motivated by the usefulness of linear CRC panel data models from this
transformation, we discuss the identification and estimation of the linea CRC panel
data models in sections 2.1 and 2.2, which will also serve as an important piece
towards the semiparametric estimation of the binary response CRC panel data model.

In the literature of demand analysis, Berry et al. (1995) propose to use the ran-
dom coefficients logit multinomial choice model to study the demand of automobiles
which has become the major vehicle of the demand analysis. However, they leave
the correlation between the random coefficients and the regressors unconsidered, and
have assumptions on the functional form of the distributions of the unobservable
variables. In this paper, we study random coefficient binary choice models without

specifying the functional form of the distribution of unobservable variables. Also,
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we allow for non-zero correlation between regressors and random coefficients. For
simplicity, we only consider binary choice models.

Other related literature includes three aspects: random coefficient models, panel
data models with unobserved heterogeneity, and models with a special regressor.
Both of these literatures have been developed considerably in the last two decades.
Random coefficient models have a long history. Swamy and Tavlas (2007) and Hsiao
and Pesaran (2008) are good surveys for these models. For binary random coefficient
models, Hoderlein (2009) consider a binary choice model with endogenous regressors
under a weak median exclusion restriction. He uses a control function IV approach
to identify the local average structural effect of the regressors on the latent vari-
able, and derives \/n consistency and the asymptotic distribution of the estimator
he proposed. He also proposes tests for heteroscedasticity, overidentification and
endogeneity. Some parts of the literature concern distributions of the random coeffi-
cients. Recent ones include Arellano and Bonhomme (2012), Fox and Gandhi (2010),
Hoderlein et al. (2010).

Among the recent developments of panel data models, the nonseparable panel
data models is an indispensable part. Chernozhukov et al. (2009) investigate quan-
tile and average effects in nonseparable panel models. Evdokimov (2010) discusses
the identification and estimation of a nonparametric panel data model with nonsep-
arable unobserved heterogeneity. He obtains point identification and estimation via
conditional deconvolution. Hoderlein and White (2012) give nonparametric identifi-
cation in nonseparable panel data models with generalized fixed effects.

The identification of discrete choice model is different from linear models. The
framework I adopt in this paper for the identification of the average slope in binary
response CRC panel data models is the special regressor method, which assumes the
existence of a special regressor with additional information. Proposed by Lewbel
(1998, 2000), this method has been exploited extensively in different settings. It is

an effective way for identification and estimation of heterogeneity and endogeneity.
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Honoré and Lewbel (2002) use this method to study a binary choice fixed effects
model which allows for general predetermined explanatory variables and give a \/n
consistent semiparametric estimator. Dong and Lewbel (2011) give a good survey
for this method.

In Chapter 3, I base the identification for binary CRC panel data models on
the special regressor method. I construct a y/n consistent estimator for the popu-
lation mean of the random coefficient based on my identification result. Also, the

asymptotic normality result is derived.

1.3 Truncated Models

Censored and truncated models are commonly used in economics when we don’t
have complete observation of the population. Due to the heterogeneity of the pop-
ulation, it is desirable to have models that can take account of the unobserved het-
erogeneity. One way is to consider a censored or truncated panel data model with
additive unobserved individual-specific random variable, i.e. fixed-effects. This was
studied by Honoré (1992), who proposed a trimming strategy that can get rid of the
unobserved variable via difference. However, the nonadditive heterogeneity arises
naturally in economic analysis. In this dissertation, I consider a truncated panel
data model which has multiplicative heterogeneity.

The model T consider is as in (1.3). The underlying model is a linear panel
data model, and we can observe the dependent variables only when they are strictly
positive. I allow the general correlation between the random coefficient 3; and the
regressor x;, and I do not assume the distribution function of u; to be known. I
focus on the nonparametric identification and estimation of the population mean (3
of random slope f; in this model. I assume that (v}, vit, i, ;) are drawn from the
underlying untruncated distribution. I use £* to denote the expectation with respect

to this distribution and assume E*(uy|z;1, ..., zyr, 3;) = 0.

www.manaraa.com



I will use the special regressor method proposed by Lewbel (1998, 2000) for the
identification and estimation of our model. Due to the nonadditivity of the unob-
served heterogeneity, the idea from Honoré (1992) cannot be generalized to this case.
I base the identification on similar idea from Khan and Lewbel (2007) which uses the
special regressor method to study a cross-sectional truncated regression model. In
Chapter 4, I extend their method to a truncated CRC panel data model. For simplic-
ity, I assume that v is a scalar regressor and is the special regressor which satisfies
three conditions. Further, although the observation of the dependent variable y;
can only be partially observed, in order to achieve the identification, I assume that
we can estimate the untruncated population distribution of the regressors (v, ;).

Once I get the identification result, I construct a y/n consistent estimator from the

identification.
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2. LINEAR CRC PANEL DATA MODELS

2.1 Identification of Linear CRC Models

In this section I consider the identification conditions for linear CRC panel data
models. The linear CRC panel data models can be motivated as follows, which is
given in Hahn (2001).

Suppose we have an unobserved fixed effects panel probit model with two periods,
P(yi = 1lci, xi, xin) = ®(¢;+0zy),i=1,...,n,t = 1,2, where ®(-) is the standard
normal cumulative distribution function, ¢; is the unobserved heterogenous effect,
and x; denotes a binary treatment variable. It is difficult to identify the slope
coefficient # without additional assumptions on the conditional distribution of ¢;
conditioning on (z;1, z;2). However, the average treatment effect 5 = E[®(¢; + 0) —
®(¢;)] can be analyzed by a transformation, i.e., we can transfer the probit model
to a linear random coefficient model, y;; = a; + bjxy +uy, © = 1,....n, t = 1,2,
where a; = ®(¢;), b; = ®(c; + 0) — P(¢;), and uy = yir — E(yit|vi1, i, ¢;). Hahn
assumes the independence of y;; and ;5 conditional on (x;1, T2, ¢;). He also assumes
(i1, x2) = (0,1) which means no individual is treated in the first period and all are
treated in the second period, and which also implies the independence of treatment
variables (x;,x;2) and the unobserved heterogeneity c;. In general, z; could be
correlated with c;.

I consider the linear random coefficient models with general correlation between
random coefficients and regressors in sections 2.1 and 2.2. For simplicity, I assume
there is no regressor with constant coefficient in model (1.2) in sections 2.1 and 2.2.
In section 2.1.1 I first consider a CRC model with cross sectional data. I discuss
how to obtain consistent estimate for the mean slope coefficient. In this case, the
condition for the identification of the average effect is quite stringent, and may even

be unrealistic for many applications. I then show that panel data can provide more
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information and help to identify the mean slopes. The identification conditions when

panel data is available are given in section 2.1.2.

2.1.1 The Cross Sectional Data Case

I consider the following CRC model with cross sectional data.

where x; is a d x 1 vector, 3; = 0 + «; is of dimension d x 1, F is a d X 1 constant
vector, a; is i.1.d. with (0,%,), X, is a d x d positive definite matrix, the superscript
T denotes the transpose, and u; is i.i.d. with (0,02) and is orthogonal to (z;, o), i.e.,
E(u;|z;, ;) = 0. T allow for «; to be arbitrarily correlated with x;. Let E(oy|z;) =
g(x;), where g( - ) is a smooth function but its specific functional form is not specified.
For example we could have g(x;) = I'(x;— E(z;)), where I is d X d matrix of constants.
However, T allow for g(x;) to have any other unknown functional form.

Replacing f; by 5 + «;, I can rewrite (2.1) as

yi = ¥ B+z]i+u

= B+, (2.2)

where v; = x] a; + u;. Note that E(v;|z;) = z] E(ay|z;) =z g(x;) # 0, so the OLS
estimator of 3 based on (2.2) is biased and inconsistent in general. Indeed it is easy

to see that the OLS estimator of § based on (2.2) is given by

Bors = B+

1
~1 T -1 T
n E T, ] n E [riz; a; + xiu]
i i

L B4 Bz Elzix] ol (2.3)
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because E[r;u;] = 0. Hence, whether BOLS consistently estimates 3 depends on

whether E[r;z; ;] = 0 or not.
For expositional simplicity let us consider a simple case that ;] = (1, %;), where

Z; is a scalar. In this case we have (a; = (a;, ;) )

1 Zi', Qa4
Elziv)oy) = F !
.’ffi 5712 9,
FE IiiOé i
(#i021) (2.4)

E(iiau —|— 53120[21‘)

where we use E(ay;) = 0. For E[z;z] ;] to be zero, from (2.4) we know that it
requires a; to be orthogonal to Z;, and ay; to be orthogonal to Z7, which are unlikely

to be true in practice. Hence, (Bors is biased and inconsistent for  in general.

Below I show that a semiparametric estimation method can consistently estimate
[ in a univariate CRC model. For a general multivariate regression model, additional

assumptions are required for identification. For a univariate CRC model
Yi = i + g,
where z; is a scalar, 5; = B+ «;, F(o;) = 0 and E(u;|z;, ;) = 0. Thus, E(u;|z;) =0

Let g(x;) = E(oy|z;), we have

E(yilv; = ) = (B + g(x)) = 20(x),

If O(x) is identified, since E(g(z;)) = 0 by E(a;) = 0, we

where 0(z) = 3 + g(x).
have 0 = E(0(x;)).

For the univariate case, it is easy to identify #(x) by 6(x) =
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E(yi|x; = x)/z (for x # 0). Hence, I can use the standard nonparametric estimation

method to estimate 6(z). Say, by the local constant kernel method:

71 n
0(z;) = [Z iB?Kh,ji] > w4 K i,
7 j=1

where K, j; = K((x; — x;)/h), K(-) is the kernel density function, and & is the

smoothing parameter. Then (3 can be consistently estimated by n=' > | 0(x;).
However, for a general multivariate regression model, (3 is not identified in general

if only cross section data is available. I use a bivariate regression model to illustrate

the difficulty of identification. Let x; = (xy;, wzz’)T, and we consider a CRC model as
Yi = TP + T2 02 + wi, (2.5)

with 81; = Bi+aa;, foi = Potagi, E(aq;) =0, E(ay;) = 0, and E(w;|x1;, o, a4, 9;) =

0. Hence, I have E(u;|x1;, z2;) = 0. Consequently, I have
E(yi|ry; = v, 09s = x2) = x101(21, 22) + x202(21, 2),

where 0(z1,22) = (1 + E(aui|T1i = 71, 29; = x3) and Oz(x1, 29) = B + E(gi|zy; =
x1,Te; = Ty). However, if we only have cross sectional data, 0;(-) and () are
not identified, since 10 (x1,x2) + x2b2(x1,22) = x103(x1, 22) + xg(i—;ﬁl(xl,xz) —
L03(x1, w2)+02(21, ¥2)) = 2103(21, X2)+3204(21, 72), where 04 (21, 12) = 7201 (21, 72)—
03(21, w2) + O2(21, T2), if 29 # 0.

Put it in another view, from
E(yilx1 = 21,29 = ®2) = 2101 (21, T2) + 2202(21, 22),

we have only one equation, and we cannot uniquely identify two unknown functions

01(-) and 6,( ). It has infinitely many solutions.
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Even though for d > 2 the cross section data model cannot identify 3 in general, it
is possible to identify 3 under additional assumptions. Suppose there exists another

random variable z; such that
E(O!i|.’13'1i, T2, Zl) = E(OQ|ZZ) = g(Zl), (26)

for example, we may have z; = x1; + x9. (2.6) states that «; is correlated with

(xi1, T42) only through z;. Then model (2.5) can be rewritten as

yi = x1(01+ 91(2:)) + 2o (Pa + g2(2)) + €&
= xi101(zi) + .Tgieg(zi) + €;

where g1(z;) = E(ous|2), g2(2) = Bl 2), € = x1i(ani— g1(2:)) + 22 (2 — g2(2:) ) +
ug, T; = (T15, ) |, and 0(2;) = (01(2),02(2))". By construction, E(e;|x1;, 9, 2;) =
0.

Model (2.7) is a varying coefficient model, hence, one can consistently estimate
() provided that E(x;r]|2; = z) is a nonsingular matrix for almost all z € S.,

where S, is the support of z;. Then a kernel estimator

n -1 5
é(Z) = [Z CCjZC;rKh’zjz] ijyth’zjz
j=1 j=1

will consistently estimate 6(z) under quite general conditions, where Kj, ... = K((z;—
2)/h). A consistent estimator of 3 is given by n' 3" A(z;), and the consistency
follows from E(0(z;)) = [ (because E(q;) = 0 implies E(g(z;)) = 0). However, the
existence of such a variable z; may not be easily justified in practice. Below we show

that even without this additional assumption, it is possible to identify § with the

help of panel data.
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2.1.2 The Panel Data Case

Panel data will provide us more information and help us to identify the unknown

functions. For heuristics let us consider an example with a bivariate variable x;, i.e.,

Yie = Z1ifi + Toifai + Wi, (i=1,.,nt=1,..T)

with 31; = Bi+aui, Boi = Batv, E(ali) =0, E(Oézi) =0, and E(Uz‘t|$1i1; L2415+ -« LT,

Toir, 014, ;) = 0.

Then we have E(Uitlxlila L1y« -5y L145T, l’giT) =0. Hence, we have
E(yz‘1|9€1z‘1 = T11,%21 = L21y -+, X1 = T1T, T24T = 332T)
= 331101(3011; T215 .-, 11T, $2T) + 502192(37117 L2155 1T, 372T),
E(yz‘T|$U1i1 = T11,T21 = X221y -+, LT = T1T L24T = szT)
= 701 (T11, 221, - . ., 17, Tor) + Tarb2(T11, o1, - . ., T1T, Tar).
where
91(I1i1, L2415 - - -y L14iT, inT) = 51 + E(Oéli|$1i1, L2315 - -+ L14T xZiT)
92(3011'1, L2315« - -y LT xZiT) = [Bo+ E(a2i|!1?1i1, L2415« -« 5 LT !1?2iT)-

Once 6;(-) and 0y(-) are identified, §; and [, are identified through relations

B = El0i(z11, 221, - .., P17, Tor)] and By = Elfa(2151, Toi1, - - -, Trir, Toir)], since

E(Ozli) =0 and E(O[Qi) = 0.
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We face a system of linear equations. If 7" > 2 and

T

T x T x
11 21 11 21 ZT 2 ZT .
. . . . t=1 V1t t=1
L=1: : : = (2.8)
T T 2
Zt:l L1t Zt:l Lot
T Tor 1T Tor

is nonsingular (i.e., when (32, 22,) (30, 23,) > (31, #122)%), then we can solve

01(-) and 6,( - ) uniquely. Specifically, we have

-1

T
T11  T21 11 X21
91(5511, T21y -+ T1T, SUQT)
92(3311, L2155 1T, sz)
1T Tor 1T Tor
-
T11 T2 E(yz’1|1’1i1 = T11, 221 = T215 -+, X1T = 1T, L2%T = $2T)
X
1T Tor E(yz‘T|x1i1 = T11, 21 = L215 -, LT = 1T, L2%5T = ZUQT)

In general, for a panel CRC model with d x 1 vector x;, it requires T" > d. In
order the matrix M defined in (2.8) to be invertible, we also need enough variation
of z; across t. Once 0(-) is identified, from F(«;) = 0 we obtain E(0(x;)) = (.

Hence, we can consistently estimate 3 by

where 0(x;) is some standard semiparametric estimator.
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In fact when T" > d, one can also first estimate 3; based on individual i’'s T
observations: BiQLS = [Zthl Tyx] ! Zle TV, then average it over 4 from 1 to n

N I Z ~ ( )
/é GM n i—1 " Ls

It is easy to show that \/ﬁ(BGM —B) A N(0,Vgu), where Vap = X, + Vo with Vo =
Bl zar ) (0 8wl (S wga) Y. If uy is serially uncorre-
lated and conditionally homoscedastic, then V4 simplifies to Va = o2 E[(3.]_, zua}) ™Y,
where 02 = E(u%|x1, ..., z;7). However, I expect large bias in the finite sample esti-
mation when 7' is small.

The condition that T" > d can be relaxed under additional assumptions. Sup-
pose there exists a random variable z; (z; can be a vector) such that E(a;|xy, z;) =
E(a;|z) = g(z), for example, we may have z; = z;,. = T! Zthl T, SO that
«; is correlated with (z;1,...,z;7) only through z;.. In this case we may have
S E(zuxj|z = 2) to be a nonsingular matrix even when 7' < d. As long as

Z;T:l E(zyx) |2 = z) is invertible for almost all z € €., I can consistently estimate

0(z) for z € Q, by

-1, 7

n T
0(2) = D w0 K1, (2) | D) yjaseKns 21e,(2),) (2.11)

j=1 s=1 j=1 s=1

where Kj, ... = K((2;—2)/h), Q. = {2 € S, : minyeq1,... g} |21—204] > €, for some 2 €
0S.}, and 1., (2) is a trimming function which ensures to avoid singularity problem
and boundary bias and will be more explicit in section 2.2. Furthermore, I can

consistently estimate 3 by

. 1 < -
emi — 91'7
Bs n;(z)

where 0(z;) is obtained from (2.11) with z being replaced by z;.
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It can be shown that, under some standard regularity conditions, \/H(BSGmi —
B) 4N (0, V) for some positive definite matrix V', we discuss the estimation and the

asymptotic analysis of BSemi in the next section.

2.2 A Correlated Random Coefficient Panel Data Model

In this section I consider a CRC panel data model as follows
Yir = ;35 + U, (i=1,..,n;t=1,..T) (2.12)

where x;; is a d X 1 vector, 3; = [ + «; is of dimension d x 1, § is a d x 1 constant
vector, a; is 1.i.d. with (0,%,), 3, is a d x d positive definite matrix, and w; is i.i.d.
with (0,02) and is orthogonal to (x;, ;). We allow «; to be correlated with x;.

[ can rewrite (2.12) as

Yit = TP+ Thov + g, (2.13)

E(uit|xin, ..., xir, ;) = 0. Let z; satisfy the condition that E(ug|z;,z) = 0 and
E(a|wi, 2) = E(oilz) = g(z;). For example I can have z; = z;. = T} Zthl Tyt
or z; = x; = (z),...,x)p)". Define n; = a; — F(ay|z;) and e = z\m; + uy. By
construction I have F(e;|xy, z;) = 0.

Then I have

Yit = %Tt/j + sztg(Zz) + € = %Tte(zz) + €it, (2.14)

where 0(z) = [+ g(z). Note that equation (2.14) is a semiparametric varying
coefficient model. Hence, I can estimate 6(z) by some standard semiparametric
estimator, say, kernel-based local constant or local polynomial estimation methods.
From E(g(z)) = 0 I obtain 3 = E(A(z)). Let 6(z) denote a generic semiparametric
estimator of 0(z), I estimate 3 by

0(z).

=X
Il
S
1
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Let 1., (2) = 1{z € Q.},and Q. = {# € S, : mineq,. gy |21 — 20| > €, for some
2o € 08}, where 08, is the boundary of the compact set S, which is the support
of z;, |h||/en — 0 and €, — 0, as n — oo. If we take z; = Z;., I can get a

semiparametric estimator using local constant kernel estimation
. 1 o= » -
ﬁSemi,l - E E HVC,l(xz)
i=1

where

n T _1n

T
HVC 1 Z x]sxjsKh zjacz]-an (J} ) Z Z xjsyjsKh,a_cjfi]-an (i'z . )7
j=1 s

j=1 s=1 =1

with K2,z = [0y K(Z5 - m — Tie )/ hom).
If I take z; = x; = (2}, ...,2/7) ", I can pool the data together and estimate 3 by

. 1 = »
Bsemi2 = - 2_1: Ovca(z;), (2.15)
where
n T B
eVCZ xz - Z x]sx]sKhxjx, sn(xz) szjsyjsKh,zjxilsn(xi)a (216)
J=1 s=1 j=1 s=1

with K zye, = ey Tz K(@50m — Titan) /Bim)-

Since the derivations of asymptotic distributions of BSemi,l and Bgemm are special
cases of using different z;, I will provide detailed proofs without specifying z;. I
consider two types of semiparametric estimators for 6(z), local constant and local
polynomial estimation methods. The local constant estimator of 6(z) for z € Q, is

given by

n T n T
0LC ( l'gsxjsKhzjz an ) ijsstKhzjz an( ) (2'17)
j=1 s=1 Jj=

1 s=1
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where Ky .. = K((z; — 2)/h) = [, k (z”h—jz’) is the product kernel, k(-) is the

univariate kernel function, z;; and z; are the [th

Then, we define BLC = %Z?:l éLC(Zz’)-

-component of z; and z, respectively.

I introduce some notations and assumptions before I present the asymptotic the-
ories. I write f; = f(z;). For the d x 1 vector 6; = 0(z;), we use 0; = 0,(z;) to denote
the I"* component of (z;) and use ||h|| = \/>_I_, h? to denote the usual Euclidean

norm. I make following assumptions.

. S e S . T T T T _
Assumption Al: (y, ,x;,z ) are iid. as (y,,zy,2, ), where y; = (yi1,..., Yir),

T _ (T T T _ T _ T .
x, = (T Typ)s Ty = (@it 1y ooy Tira)y, 2 = (Ziny s Zig). 2; admits a Lebesgue

density function f(z1,...,2,) with inf,cs. f(z) > 0, where S, is the support of 2,
and is compact. x;; is strictly stationary across time t. z;; and wu; have finite fourth
moment.

Assumption A2: §(z) and f(z) are v + 1 times continuously differentiable, where
v is an integer defined in the next assumption.

Assumption A3: K(z) =[], k(z), where k() is a univariate symmetric (around
zero) bounded v order kernel function with a compact support, i.e., [k(v)dv =1,
[k(w)vidv =0for j =1,...,v—1and p, = [k(v)v”dv # 0, where v is a positive
even integer, with [ |k(v)[v"*?dv being a finite constant.

Assumption A4: Asn — oo, nhy -+ hy/Inn — oo, ||h]|* Inn/H — 0, n||h||*** —

0,e,—0,||h||/en — 0, hy = 0foralll=1,..q.

Theorem 2.2.1. Under assumptions Al to A4, I have that

Vn (BLC 8- h;’Bl,Lc> % N(0, Vi),

=1
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where

1 okrm,;  0*20;
Bic = Y. Tl {mfl(—kz)(—kz)} ,
k1 +ka=1,ka 0 kK Ozt~ 0z”

mi = m(z) =T Elwyr|z)f(z),

okrm; oFrm(z) o0,  9™0(z)

|Z:Zi7

|Z:Zi7

32;“1 82{“1 3Zlk2 82{“2
T
Vie = Var(0(z)) + T *Var (Z(m;lf(zi)l'isl';(oﬁ — E(Oéz|zz))))
s=1
T
+T2Var (Z uismi_lmisf(zi)> .
s=1

We can see that the semiparametric estimator I give has a y/n convergence rate.
The reason is well known that taking average can reduce the variance of nonpara-
metric estimators. I also use the high order kernel to reduce the bias. The proof of
Theorem 2.2.1 is given in the Appendix A.

In order to reduce the bias, I also consider the local polynomial estimation. I

introduce some notations first. Let

k= (k... k), Kl=k!x---xk) k= Zkl,

z’“_zflxn-xqu hk:h’fl...hkq,

IFlg(2)

g g DRo(z) = ————2—.

0<|’€z|:<p Jj= 01; 8 e .Oz(];q
k14 +kq—_7

Then I minimize the kernel weighted sum of squared errors

2

SO wis— D wbe(2)(z— 2| K, (2.18)

=1 s=1 0<[k|<p
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with respect to each by(z) which gives an estimate of by(z), and klb(z) estimates
D*0(z). Thus, O,p = by(z) is the p™ order local polynomial estimator of 6(z). I
define Brp = %22;1 éLp(zi).

Now I need 6(z) to be p + 1 times differentiable, and the local polynomial esti-

mation cannot be used together with the high order kernel. So I give the following

assumptions.
: S S S s T T T T _
Assumption B1: (y,',z;,z,') are i.id. as (y, ,x;,2 ), where v, = (y;1, ..., Yir),
T _ (T Ty T _ T _ T -
r, = (@, Typ), Ty = (Tit1, oo, Tird), 2 = (Zi1, ..y Zig). 2 admits a Lebesgue

density function f(z1,...,2,) with inf.cs. f(z) > 0, where S, is the support of z,
and is compact. x; is strictly stationary across time t. z;; and u; have finite fourth
moment.

Assumption B2: 0(z) is p + 1 times continuously differentiable, and f(z) is three
times continuously differentiable.

Assumption B3: K(z) =[], k(z), where k(- ) is a univariate symmetric (around
zero) bounded kernel function with a compact support, i.e., [ k(v)dv =1, [ k(v)v'dv
=0,if 0 <i < p+2isan odd integer and p; = [k(v)v'dv #0,if 0 <i<p+2is
an even integer. We define i, = [v}* - - up [T, k(v)dv; ... dv, if k is a g-tuple.
Assumption B4: As n — oo, nhy---h,/Ilnn — o0, e, — 0, ||h]|/e, — 0;if p >0
is an odd integer, ||h]|*™?Inn/H — 0, n||h||*** — 0; if p > 0 is an even integer,

R[>+ Inn/H — 0, n||h]|?*+6 — 0; by — 0 for all | = 1, .., q.

Theorem 2.2.2. Under assumptions Bl to B4, I have that

vn (BLP —p - BLP) < N(0,Vp),
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where Brp = PLS™'M Zlkl uht g [©:], if p is an odd positive integer, or Bypp =

—p+1 Kl
P S™tM Z|k|:p+2 f";ﬁ—}ka [©:], if p is an even positive integer, Py, S, M and ©; are

matrices defined in the Appendiz A, and

Vip = Var(0(z)) + T *Var (Z(PlS(zi)_lfisx;(ai — E(aJ%))f(zJ))

s=1

T
+T *Var <Z Pls(Zi)_luisf(zi)Fis> )

s=1
where ;s is also defined in the Appendiz A.

The proof of Theorem 2.2.2 is given in the Appendix A. Note that if one imposes
an additional condition that n||h||* — 0 or n||h|[>"*? — 0 as n — oo for (¢ or
BLP, respectively, then the center term is asymptotically negligible, and I have the

following result:

\/E(BSemi - /8) i} N(Oa V):

where BSemi can be BLC or BLP.
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3. BINARY RESPONSE CRC PANEL MODELS

3.1 Identification of a Binary Response CRC Panel Model

The identification of the binary response model is different from the linear mod-
els. We can identify the coefficients if we assume that the unobserved random terms
have known distributions, and this will allow us to estimate the model by condi-
tional maximum likelihood method. However, if we do not assume the distribution
of the unobserved terms, the identification becomes problematic. We need to impose
additional restrictions on the dependence structure between the regressors and the
unobservables. One way to identify the model is transferring the model to a single-
index model, which can be estimated nonparametrically. However, the single-index
model only admits limited heterogeneity, see Powell et al. (1989), Ichimura (1993),
Klein and Spady (1993), Hardle and Horowitz (1996), Newey and Ruud (2005). An-
other way of identification is based on the conditional quantile restrictions. Manski
(1985, 1988) give the identification conditions in this type for the binary response
models. A sufficient condition for the identification of the coefficients is the median
independence between the error and the regressors. He also suggests the conditional
maximum score estimator to estimate the model. However, the limiting distribution
is not standard which is derived by Kim and Pollard (1990). Horowitz (1992) modi-
fies the maximum score estimator to a smoothed maximum score estimator and gets
the asymptotic normal distribution. The convergence rates of maximum score esti-
mators are less than y/n. Chamberlain (2010) shows that the consistent estimation
at the y/n convergence rate is possible only when the errors have logistic distributions
without other additional assumptions.

The third way of identification and achieving the y/n convergence rate is via the
special regressor method, which is proposed by Lewbel (1998, 2000). With additional
assumptions on the joint distribution of the observables and unobservables based

on one special regressor, we can get the identification and the usual parametric
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estimation rate. I use this method to identify a binary response CRC panel data
model in this paper.
I consider a binary response correlated random coefficient panel data model as

follows.
yir = 1(vie + 2, B; + ugy > 0), (i=1,.,nt=1,.,T) (3.1)

where 1( ) is the indicator function, (; is the individual specific random coefficient,
and the superscript " denotes the transpose. For simplicity, I assume there exists
only one regressor which has constant coefficient and this regressor is the special
regressor in model (1.2) to get the model (3.1). The analysis remains similar if I
assume more regressors with constant coefficients. Let 8; = f+ «;, where E(«;) = 0,
then [ is the average slope we are interested in. We assume v;; is a special regressor,
which satisfies three conditions that v;; is a continuous random variable, independent
of a; and w; conditional on z;;, and has a relatively large support, which will be
made more specific below. Here, I normalize the coefficient of v; to be 1. If it is
negative, I can use —wv; instead of v;. The advantage of including such a special
regressor is to allow us to transfer the binary response model into a linear moment
condition. Further, T assume that E(uy|z,..., 27, ;) = 0, which is the strict
exougeneity condition. Also, I assume there exists a random vector z; satisfying the
condition that F(u|xy,z;) = 0 and E(ay|xy, zi) = E(alz) = g(z;), for instance
2z =T =T 'Y 0wy or z; = (x),...,x)p) . We already saw the identification
and estimation in the linear case. With the help of the special regressor, I can transfer
(3.1) to a linear moment condition, i.e., E[(yy — 1(vie > 0))/fe(vie|xis, 2i)|Tit, z:) =
vy B+ E(oi|ny, z;) = x), B+x)g(2), which is given in the identification proposition
below.

Panel data give us more observations for the same individual over different time
periods. This brings us the advantage of taking consideration of the heterogenous

effects. 1 can identify the average slope if I have enough time period or additional
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information on z; as I did in the linear case. I assume the data are independent

across ¢. | give the assumptions on the special regressor.

Assumption C1: The conditional distribution of v;; given x;; and z; has a continu-
ous conditional density function f;(vy|z, z;) with respect to the Lebesgue measure
on the real line. Moreover, fi(vy|zy,z;) > 0, if fi(vy|zi, z;) has the real line as the
support, and inf,, e[z, iy fe(Vie| Tir, 25)

> 0, if [L¢, Ky is compact, where [L;, K] is the support of v;; conditional on x;; and
2.

Assumption C2: Assume «; and u;; are independent of v; conditional on x;; and
2. Let ey = x}(c; — g(2)) + ui and denote the conditional distribution of ey
conditioning on (x4, z;) as Fy, (€|, z;) with the support €., .

Assumption C3: The conditional distribution of v; conditional on z;; and z; has
support [L;, K;] for —oo < L; < 0 < K; < +00, and the support of —x}, 83—z} g(2;) —
eir is a subset of [Lg, K.

In the empirical analysis, the existence of the special regressor depends on the
context. For instance, the age or date of birth can be chosen as the special regressor.
In some situations, it may not be easy to find such a regressor. For more discussions,
see Honoré and Lewbel (2002).

Based on these assumptions, similar as Theorem 1 in Honoré and Lewbel (2002),

I have the following identification proposition.

Proposition 3.1.1. Under assumptions C1, C2, and C3, let

it — L(vie > 0)]/ fe(vit| i, 25)  if vie € [Ly, K,

otherwise.

*

Yir =

we have
E(yp|win, 21) = 28 + 2,9(2:). (3.2)

The proof of this proposition is given in the Appendix B.
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3.2 Estimation of the Binary Response CRC Panel Model

Based on the identification analysis in section 3.1, I can construct the semi-
parametric estimator of [ using kernel methods. Let 6(z;) = (5 + g(z;). Since
0 = Ela;] = E[g(2)], we have § = E[f(z;)]. Once I have an estimator of 6(-), I can
estimate 3 using = n"' 3", 0(z).

From (3.2), [ have 0(z;) = (Zle E[xltx:t\zzD - ST Elzays|z). Since Elziyl| 2]
= Elzy(yie — L(vie > 0))/ fi(vie|zir, z:)|z:] and fi(vi|zi, z;) is unknown, I have to es-
timate f;(vi|xy, 2;) and I estimate it by

f(’U |.'17 > ) _ ﬁ(vit7$it7 Zz) (nH)_l 22‘21 Kh('Ukt — Uity Tt — Ligy Bk — Zz)
t\Vit|Lit, i) —

ft(xita Zz) (nﬁ)_l Zzzl Kﬁ(xkt — Tty Bk — Zz)

Y

where f,(vi, Ty, z:) = (nH)™! Yorey K — vig, T — i, 21 — 1), fi(ma, ) =
(ng)_l ZZ:1 K (e — @i 21 — 2i), H = by haygya, o= hy - hayqr1, Kn(u) =
datl g (%) h = (hi,... hargs1)” and b = (ha,... hasgs1)T. Then I estimate

Elzyy;|zi] by

(nH') VS we(yse — L(vge > 0)) K (25 — 20)Ln, 3/ fe(vselwje, 25)
(nH") 71370 Kz — ) ’

E[xztyz*t|zz] =

h 1..,=1; it '7':1 jts Lty < vazaﬂvxz: E‘S'umz: i
where 1., ; 2 (Ut Tt 25) {(vje, 250, 25) € ¥ {a le{lﬁ}ﬁqﬂ}
la; — b)| > 7,, for some b € 0S,;.}, OS,s. denotes the boundary of the compact
set Sy which is the support of (vji, 7, 2;), H = hy---hy, ' = (hy,... hy),
\|h||/7n — 0, and 7,, — 0, as n — oo. I use 1, (vji,xji, 2;) to truncate the data
at the boundary to avoid the singularity problem and the boundary bias.

I can get an estimator of 6(z;) by the local constant kernel method or the local

polynomial method. Due to the complexity of the local polynomial kernel estimator,

I will not discuss it here. However, based on the analysis in the linear case, we know
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the derivation will be similar. The local constant kernel estimator @ ro(z;) for z; € Q,

is given by

n T n

T
. y —1(v >0
Orc(z) = E E x]txﬁKh’gz S E E 2 i ))Kh’,jilrn,jlen,ia

j=1 t=1 t=1 j=1 ft(vjt|$ytazj)

where 1. ; = 1..(z) = H{z € .}, Q. = {z € & : mineq,. g |2 — 200 2
e, for some zy € 0S.}, 08, is the boundary of the compact set S, which is the
support of z;, ||F'||/e, — 0 and €, — 0, as n — oco. Then the local constant kernel

estimator of (3 is given by
Bre=n" Z Orc(z).
i=1

I list some conditions before I present the asymptotic distribution.

Assumption C4: (y;, v, 2], 2) areiid. as (y],v], 2], 2]), where v = (yi1, ...,
vir), v = (Vit, -y vir), T = (], k), T = (Tied, o Tira)y 20 = (Zids s Zig)-

2z admits a Lebesgue density function f,(z1, ..., 2,) with inf,es. f.(2) > 0, where S,
is the support of 2z and is compact. v; is a continuous scalar random variable with
the support [L;, K;| on the real line R. (vy, zy, z;) has a compact support Sy... i
and z;; are strictly stationary across time ¢, x;; and u; have finite fourth moment.
Assumption C5: 0(z), fi(v,z,2), fi(v,z) and f,(z) are v + 1 times continuously
differentiable, where v is an integer defined in the next assumption.
Assumption C6: K(z) = [[]_, k(z), where k(- ) is a univariate symmetric (around
zero) bounded v order kernel function with a compact support, i.e., [k(v)dv =1,
[k()vidv =0for j =1,....,v — 1 and p, = [k(v)v*dv # 0, v is a positive even
integer, with [ |k(v)|v”2dv being a finite constant.
Assumption C7: As n — oo, nH”?/Inn — oo, \/nH/Inn — oo, ||[I||* Inn/H" —
0, [IW|I"/H" — 0, ||| — 0, allal[* — 0, n|lp||* — 0, &, — 0, 7, — 0,
\W||/en — O, ||h||/Tn — O, €0 > T, [|F|/(en — Ta) — 0, by — 0 for all | =
wd+q+ 1, hy—0forall=1,..4q.
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Theorem 3.2.1. Under assumptions C1-C7, I have that

Vi(Bre — B) t N(0,Vie),

where

T
VLC = Var( ( +T zvar(z m fz Zi xztfzt'i'm fz(zz)$zt(E[yzt|Uu$zt7zz]
t=1

~Blyi v =) ).

and yi, = [yir — V(v > 0)]/ fe(vie|@ie, 2:), if v € [Le, Ky, and y}; = 0, otherwise.

The proof of Theorem 3.2.1 is given in the Appendix B.

www.manharaa.com




28

4. A TRUNCATED CRC PANEL DATA MODEL

4.1 Identification of the Truncated CRC Panel Model

In this section, I discuss the identification of the truncated model (1.3) I discussed
in section 1.3 of Chapter 1. My identification result is based on the special regressor
method which is similar as the one used in Khan and Lewbel (2007). The idea
is to assume the existence of a special regressor which satisfies three conditions, i.e.
continuity, conditional independence and relatively large support, which will be more
specific below.

Let 3 be the population mean of 3;, then I have the decomposition 3; = 3 + «;,
where E*(a;) = 0. Since (3; and zy; are correlated, I introduce z; to capture this cor-
relation, which satisfies that E*(uy|zy, z;) = 0 and E*(oy|zy, z;) = E*(qu]z:) = g(z:),
where g(-) is a smooth function. For example I can have z; = 7;. = T~* Zthl Tt
or z; = x; = (2]}, ...,z)p)". Define ¢;; = x} (o; — E*(y|2;)) + uy. By construction I

have E*(€;|zi, z) = 0. Let 0(z;) = B+ g(z;). Therefore, I have that
Yy = Uity + x;|;6<zi) + €.

Since E*(a;) = 0, I have E*(g(z;)) = E*(cu) = 0 by the law of iterated expectations.
Hence, I have § = E*(6(z;)). The identification of 5 depends on the identification of
o(-).

Recall that I use E* to denote the expectation under the underlying untruncated
population distribution, and I use E to denote the expectation under the truncated
distribution. Since I can only partially observe 3}, when vy, > 0, I have the following

relationship

E*h ;(,Ii,/Ui,ZZ’,Gi ]-OS :(Sk; Zi
ETh(yit, Tt vie, 21, €2)1(0 < g < k)|zi] = e 7 Pt*(y* >t)0|(z-) et ]7
it = 2
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where h(-) is any function of (yu, Ti, vit, 2i, €1), k > 0 is a constant, and P*(y}, >
0|2;) is the conditional probability of the event {y}, > 0} under the underlying
untruncated probability.

I give some assumptions before I give the identification result.

Assumption D1: Assume (y;, Ti, vit, 2;) (i =1,...,n,t =1,...,T) are drawn from
the model (1.3) with v # 0, which are independent across the individual index 4, and
strictly stationary across the time t. The untruncated conditional distribution of v;
conditioning on z; is absolutely continuous with respect to a Lebesgue measure with
conditional density function f*(v;|z;), which has support [L, K| for some constants
L and K, —o0o < L < K < o0 and for any fixed z;.

Assumption D2: Assume that conditional on z; and z;, v; is independent of
a; and uy. Let F*(ey|vy, Ty, z;) to denote the underlying untruncated conditional
distribution of €;; = x}, (o — g(2;)) +ui; conditioning on (v, 4, 2;). This assumption
implies that F*(e;|vi, Ti, 2:) = FF (€T, 24).

Assumption D3: For any (x;,z;,€;) on the underlying untruncated support of
(w41, i, €3¢), we have [1(y > 0)L + 1(y < 0)K]y + 2,,0(2;) + € < 0, and there exists
a constant k > 0 such that k < [1(y > 0)K + 1(y < 0)L]y + z,,0(2) + €x.

Assumption D4: E*(uy|zy,z) = 0, and 3. E*[z4x}|2] is invertible.

Assumption D1 to D4 give us the conditions for the identification. Assumption D1
requires the special regressor to be a continuous variable. Assumption D2 means the
special regressor is independent of unobserved heterogeneity conditional on the rest
of regressors and the random variable z; we introduce. Assumption D3 requires the
support of the special regressor is relatively large. Assumption D4 is the identification
condition similar to the linear panel data model which implies that T" > d, where d
is the dimension of the regressor x;.

Under the assumptions above, I give the identification result for 5. I divide

my identification results into three steps. First, given v I give the theorem on the
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identification of #(-). Second, I discuss how to identify . In the end, since the law
of iterated expectations imply that § = E*[(z;)], I can identify 5 once I have the
identification of 0( - ). Let

i = (yir — vuy)1(0 <y < k)/fi(vielwae, 2:)
it =
E[1(0 <y < k)/fi (vie wir, 20)|2i]

Theorem 4.1.1. Let Assumptions D1 to D4 hold. Let k be any constant satisfying
0<k< k. Then

0(z) = (Z E*[xitx;|zi]> > Elwail ). (4.1)

t=1

Denote

1 d E2031(0 < yir < k)/f{ (Vi win, 23)]
)= T 2 "0 2 g < B/ i s 2]

I have the following identification theorem for ~.

Theorem 4.1.2. Under Assumptions D1 to D4, and let k and k' be any constants
satisfying 0 < k' < k < k. I have

k—Fk

IR (42)

Once I have the identification result of -y and 6( - ), I can identify 3 by the equality
B = E*(0(z;)). In this section, though the observations of y; are not complete, I
assume that I can get the full information on the underlying untruncated population
distribution of (24, vy, ;). In practice, this can be accomplished by the same data set
which includes complete observations of the covariates other than just the truncated
sample or by an auxiliary data set. This means that f;(vi|zi, z;) and E*(6(z;)) can

be estimated from the data.
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4.2 Estimation of the Truncated CRC Panel Model

In this section, I construct our estimator based on the identification results in
section 4.1. Recall that 6(z;) = 5+ g(z;). Since 0 = E*[o;] = E*[g(z;)], we have
B3 = E*[0(z)]. Once I have an estimator of (-), I can estimate 3 using 3 =

(")~ 32, (=),

First, I construct the estimator for «. Denote

pe(k,z) = EL0 <y < k)/f(vielwir, 2:) 2],
pe(k) = E[1(0 <y < k)/f*(vielwir, 2)]-

From (4.1.2), I have to give the estimator for p;(k, 2;). Since f;(vit|z, 2;) is unknown,

I have to estimate f;(vi¢|xy, z;) and I estimate it by

fA*('U't|33't Z) - ft*(vih Tits Zi) — (n*H)_l ZZ*:l Kh(UZt — Vit, th — Tit, ZZ - ZZ)
t \Vit| Lty <) — ~ = = = ,
Jt (@i, z) (n*H)= 32y K@, — @ 20 — )
where ft*(vitaxitazi) = (n*H)™! Z:;l Kn(viy — vies ¥y — Tat, 25 — 2i), ft*(xitazi) =

(" H) " S0 Ko (ahy — @iy 2f — 20)s H = by hapgers H = ho -+ hapgrr, Ky(u) =
I & (;;—;) h=(hi,... hargs1)T, and i = (ha, ..., hasgs1) . Then I give the
estimator for u(k, z;) and (k) as

,[:L (k p ) o (nH/)_l Z?:l 1(0 S yjt S k)Kh’(Zj — Zi)/ft*(vjt|xjt, ZJ)
t\ vy <4 - . - ’
(’I’LH) 1 ijl Kh/(zj — Zz)

. I =10<vy; <k
iy = 2y M0sm=h),
e [ (v v, i)

and the estimator for ((k) can be constructed as

n

~ 1 " _ 1 2’(}110§ ng
(=23 gy Ly 20O ve K)o

T t=1 n i=1 ft*(vit|xit72i)
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where 1Tn,i = ]'Tn (Uit7 Lits Zz) = 1{(vita TLits Zz) S vaz}7 vaz = {a S Sv:cz : min
1e{1,...d+q+1}
la; — by| > 7, for some b € 0S,,.}, 0S,.. denotes the boundary of the compact set
Sye- Which is the support of (v, 2y, 2;), H' = by -+~ by, B = (B, ... hy), ||h]| /70 — O,
and 7, — 0, as n — oo. T use 1, (vy, Ty, z;) to truncate the data at the boundary to

avoid the singularity problem and the boundary bias. Hence, our estimator of ~ is

kW
R )

-1
From (4.1), I have 0(z;) = (Zthl E* [xzt:vmz,]) Zthl Elz17it|z]. Since
Elzy0i|z) = Elra(ya — vay) 10 <y < k)/pe(ky 2:) f7 (Vig| i, 20) |21]

[ estimate E|[x;Ji|zi] by

(nH/) Zg 1 xﬂt(th ,UJt’AY)]‘(O < Yjt = < k)Kh’ JitTn J/lu’t(k ZJ)ft ’UIIZ,]
(nH')~ Z; 1 Kw i

E [xztgzt|zz] =

where f7 = fi (i@, z5), and 1, ; = 17 (vje, Tje, 25) = H{(vje, Tj2, 25) € Quaz}-
I use the trimming function 1, (v;i, Z1, 2;) to trim the data at the boundary to avoid
the singularity problem and the boundary bias.

I can get an estimator of 6(z;) by the local constant kernel method or the local
polynomial method. Due to the complexity of the local polynomial kernel estimator,
I will not discuss it here. However, based on the analysis in the linear case, I know

the derivation will be similar. The local constant kernel estimator éLc(zi) for z; € Q,

is given by
9 ) nt T TR 11 rllznxw
re(2i) n* ;;x it hLgitmmd Tendl pr ”tﬁ*(vjtlxmzj)
: 1(Out(k;t;) k))Kh"jilT"’jla"’i’
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where 1., ; = 1..(%) = 1{z; € Q.}, Q. = {2 € & : mineq, g |2 — 200] >
e, for some 2y € 0S.}, 0S, is the boundary of the compact set S, which is the
support of z;, ||F'||/e, — 0 and &, — 0, as n — oco. Then the local constant kernel

estimator of (3 is given by
Bre = ()™ bre(z). (4.4)

I list some conditions before I present the asymptotic distribution.

T 7 7T T

Assumption D5: (y; ,v, ,z; , 2 Doal, 2]

) are iid. as (y), v/, 2],z ), where ;' = (yi, ...,
vir), v = (Vit, -y vir), ] = (], k), 1 = Tieay o Tira)s 20 = (Zids s Zig)-
z] admits a Lebesgue density function f,(21, ..., z,) with inf,es, f.(2) > 0, where S,
is the support of 2 and is compact. v; is a continuous scalar random variable with
the support [L;, K;| on the real line R. (v;, zi, 2;) has a compact support Syz.. vit
and x;; are strictly stationary across time ¢ and u;; has finite fourth moment.
Assumption D6: 6(z), fi(v,x,z), fi(v,z) and f,(z) are v + 1 times continuously
differentiable, where v is an integer defined in the next assumption.

Assumption D7: K(z) = []/_, k(z), where k() is a univariate symmetric (around
zero) bounded v order kernel function with a compact support, i.e., [ k(v)dv =1,
[k()v!dv =0for j =1,...,v—1and p, = [k(v)v”dv # 0, v is a positive even
integer, with [ |k(v)|v”T2dv being a finite constant.

Assumption D8: As n — oo, n/n* — ¢, 0 < ¢ < oo, n*H?/Inn* — oo,
VrH/Inn® — oo, || Inn*/H — 0, [|W||"/H" — 0, n*[|[W|[* — 0, n*[|a][* — 0,
w Bl = 0, en = 0, 70 = 0, [1[|/en = 0, [Pl /70 — 0, 20 > 7, W]/ (0 = T0) —
0,y —O0foralll=1,...d+q+1,h—0forall=1,..4q.

Then I have the following asymptotic theorem.

Theorem 4.2.1. Under assumptions D1-D8, I have that
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(i) V(3 — ) 5 N(0,V,), where V, = E[t(k)?],

k) = o[5S (k) k) — oulbpm () (k) + (k) )

1
wx>%%xm
20410 <y < k)
k) = —n(k
%( ) ft*(vit|xit7zi) nt( )
_CE[ZUitl*(O <y < k) fi:uzz,i
ft (vit|xit7 Zl) ft,vxz,i
2041(0 <y < k) fres
[ il mie, ) fiaa
10 <yu <k)
— k
I (vit| iz, 2;) pulk)
]-(O S Yit S k) ft,vmz,i
ft*(vit|xitﬂzi) ftﬂjvmz,i
1(0 S Yit S k) ft,mz,i
f:(vit‘x’ih zi) ftﬂ:mz,i
n(k) = ER2v31(0 <y < k)/ f] (vit| it z3));

~

* * *
|Uit = Uy Lit = Ly, &5 = Zz]

+cE|

|xit = x:ta 2 = Z:]u

—cE|

* * *
|Uit = Uy it = Ljpy, &5 = Zz]

+cE|

|xit = x:tv Zi = Z:]a

(ii /0" (Bre — B) KR N(0, Vi), where

Vie = E*(g(z))*+E* (T_l Z lmi_lfz(zf)ﬂfitfit

=1

-|-m_1f (z7)x}, (E[yzﬂvZ =, Ty =Xy, 2 = 2]
E[@it|$it = xft, Zi = Zf])

—m; B lwgagy |z = 2710, 1. (2) (K, 27)

—m; tf(2)) (272 (K’Elxy|z = 2]] — kE[vyx) |z = 2’:]9(21*)))

AGEAY
Nt(kaz;) ’

100 < gy < k .
bl z) = MOSw <K gy

ft* (Uit|xit: Zi)
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100 < yir < k) fronei
Teitlie, z0) [ pan
100 <yy < k) Jtazi
[t (it|za, 2:) fzxz,z

—cE[ Vit = vy, Ty = T3y, 2 = Z:]

+cE|

| = @, 2 = 7],

Eit = Ui — E(Gu|zar, z:), and gy = [(yie — )10 < yir < k)]/ fr(vielzae, 2:), if vie €
[Li, Ky], and yi, = 0, otherwise.

The proof of Theorem 4.2.1 is given in the Appendix C.
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5. MONTE CARLO SIMULATIONS AND EMPIRICAL APPLICATION

5.1  Monte Carlo Simulation Results

In this section, I conduct extensive simulations to examine the finite sample
performance of different estimators including semiparametric estimators I proposed

in sections 2.2 and 3.2.

5.1.1 Linear CRC Panel Data Models

In this subsection, I consider a simple linear panel data model
Yit = Boi + TitPri + Wit (i=1,.,nt=1..T) (5.1)

where x;; is a scalar random variable, By; = By + s, B1i = (1 + a4, Qo 1s i.4.d. with
(0,02), ay; is i.i.d. with (0,0%), and wy is i.i.d. with (0,02) and is independent with
(i, ;). n = 100,200,400 and T" = 3. I report the estimated mean squared error
(MSE) computed by

nr

MSE(BS):%Z[Bs,j_ﬁs]27 fOl"S:O,l,

Jj=1

where B is one of five estimators, Bo LS ﬁAFE, BGM, Bgemi’l, ﬂASemi,Q, which are defined
below, ﬁs,j is the value of Bs in the 7 simulation replication, n, = 1,000 is the
number of replications.

I will compare the following five estimators:

(i) The OLS estimator of regressing y; on (1,x;), i.e., Bors is from the linear

regression

Vit = Bo + i1 + .
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Let j‘it = (]_,Q’Jit)T, then

n T n T

Bors = (Z Z Tudy) " Z
=1

TitYit-
i=1 t=1 1

t=

(i) The fixed-effects estimator Spp,

Bp = D i 23:1(% — Zi- ) (Yt — Yi-)
Z?:I 25:1(3% —Ti-)?

Y

where 7;. = %ZL xy and 7. = %EL yie. We can see that the fixed-effects

estimator cannot estimate (3y. I only report its estimation results for (.

(iii) I estimate (3; using each individual’s data, i.e.,

51 OLS = [Z wzt%t TitYit-

IIMH

Then I average BA,-,O s to obtain the group mean estimator BGM as defined in (2.10).

(iv) If we let z; = T;., where Z;. = % Zthl Z;, then I can get the semiparametric
estimator Bsemi,l. That is, BSCmi’l is the average of the varying coefficient estimator

évc’l of the following varying coefficient model
Yir = 00(2i) + 2t (2:) + wi.

BSemi,l = %Z?:l évc,l(a_ci. ), where

n T n T
HVC,l (3_72 . ) = (Z Z ijti;:Kh,mj LT n -t Z Z ]ty]t ]-sn (i'z . )7
j=1 t=1 Jj=1 t=1
where Kh,xj‘xi' = Kp(z;. —7;.), K(-) is a kernel function and h is the smoothing

parameter.
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(v) If Tlet 2; = 2; = (z}, ..., x)p) ", then I can get the semiparametric estimator
Bgemm. That is, Bsemi,g is the average of the varying coefficient estimator évc,g of

the following varying coefficient model
Yit = 0o(2:) + 24401 (2:) + wis.

Bsemiz = Iy Ovea(z;), where

n T

0VC2 Zz szjtxjtKh z—:n(xi))ilzz jtthKh )15n(xi)7

=1 t=1 =1 t=1

where K (-) is a multivariate kernel function and h is a vector of smoothing param-
eters.

Below I report the result of a small simulation study. I generate y;; by
Yit = Boi + TitPri + Wi, (i=1,..,nt=1..T;T=3)

where ﬁOi = ﬂo + o, 611' = ﬁl + aq, ﬁo = 1, ﬁl = 1, Tit is i.i.d. with Gamma(l, 1),
and uy is i.1.d. with N(0,1). ag; and «ay; are generated in the following ways, where

ag; = voi — E(vo;) and ay; = vy — E(vy).

DGP1: wy =%;- +noi, and vy; = ;. + Ny,
DGP2 - Voi = (;E‘,L — 1)4 + Mo, and V1 = (fi’z - 1)2 + ln(fz + 1) + M4,
DGP3 : Vo; = (.’i’l — 1)4 + Noi and U1y = Sln(?’fl) + i,

DGP4 . Voi = (f‘z — 1)4 +770i; and V1 = ( Zi1 +CL'12 +£L' )/94‘7711,

where z;. =T7! ZtT:l Tit, No; and ny; are i.i.d. with Uniform[—1,1].
In both DGP1 to DGP4 above, ag; and «ay; are correlated with x;;.
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The simulation results are reported in Table 5.1, Table 5.2, Table 5.3 and Table
5.4, and the results confirm our theoretical analysis in the paper. I can see that in

all of these tables, BOLS and BFE are not consistent.

. R Table 5.1
MSE of Bors, Bre, Bem, Bsemins Bsemia for DGP1

MSE(5)

n | Bors | Bre | Bam | Bsemii | BSemiz2
100 | 0.1727 n/a 0.0511 | 0.0193 | 0.0239
200 | 0.1695 n/a 0.0252 | 0.0103 | 0.0131
400 | 0.1691 n/a 0.0170 | 0.0056 | 0.0079

MSE(5)

ﬁOLS BFE /BGM ﬂSemi,l ﬁSemi,Q
100 | 1.7706 | 0.1100 | 2.2231 | 0.1739 | 0.2532
200 | 1.7876 | 0.0788 | 0.6199 | 0.1052 | 0.1596
400 | 1.7740 | 0.0619 | 0.6050 | 0.0602 | 0.0981

R K ’AI‘ableA5.2 R
MSE of Bors, Bre, Bams Bsemit, Bsemi for DGP2
MSE(5)
n Bors BrE Bam | Bsemin | Bsemi2

100 | 2.6718 n/a | 0.2425 | 0.2012 | 0.2120
200 | 2.5887 n/a | 0.1229 | 0.1049 | 0.1102
400 | 2.4841 n/a | 0.0768 | 0.0632 | 0.0664
MSE(p)
ﬁOLS ﬁFE ﬁGM ﬂSemi,l ﬁSemi,Q
100 | 34.9186 | 1.1697 | 2.2223 | 0.0973 | 0.1843
200 | 32.0093 | 1.0391 | 0.6196 | 0.0603 | 0.1166
400 | 29.3801 | 1.0430 | 0.6048 | 0.0348 | 0.0692

From Table 5.1 we observe the followings: BASemi,l, ﬂASemi,z have the smaller esti-
mation MSE than Bg. The GM estimator has the large estimation MSE because

of the short panel of 7' = 3 so that each individual estimator has large variance.
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Though averaging over individuals makes it a consistent estimator, its finite sample

MSE is still large.
The simulation results for DGP2 is given in Table 5.2. Note that for DGP2,
Bgemm performs the best, followed by Bgemm, and with BGM far behind.

R X 'AI‘ableA5.3 R
MSE of Bors, Bre, Bams Bsemii, Bsemiz for DGP3
MSE(Bo)
n Bors Bre Bam ﬁsemi,l /BSemi,Q

100 | 1.3804 n/a 0.2425 | 0.2032 | 0.2142
200 | 1.3286 n/a 0.1229 | 0.1057 | 0.1116
400 | 1.2416 n/a 0.0768 | 0.0635 | 0.0673
MSE(f)
Bors Bre | Bam | Bsemin | Bsemi2
100 | 17.3218 | 0.2184 | 2.2223 | 0.1251 | 0.2007
200 | 14.9118 | 0.1826 | 0.6196 | 0.0790 | 0.1281
400 | 12.7015 | 0.1630 | 0.6048 | 0.0453 | 0.0768

From Table 5.3 we observe that ﬁASemi,l has the smallest estimation MSE, followed

by BSemi,Q and BG’M-

R R ’AI‘ableA5.4 R
MSE of Bors, Bre, Bams Bsemi,i, Bsemi for DGP4
MSE(5)
n Bors Bre Bam | Bsemii | Bsemi2

100 | 2.7451 n/a | 0.2425 | 0.2105 | 0.2115
200 | 2.6751 n/a | 0.1229 | 0.1125 | 0.1098
400 | 2.6186 n/a | 0.0768 | 0.0701 | 0.0662
MSE(p)
ﬁOLS ﬂFE ﬂGM ﬂSemi,l ﬁSemi,Z
100 | 36.0380 | 2.0803 | 2.2334 | 0.1287 | 0.1834
200 | 33.2559 | 1.8795 | 0.6224 | 0.0691 | 0.1080
400 | 31.2719 | 1.9394 | 0.6077 | 0.0394 | 0.0631
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Table 5.4 reports simulation results for DGP4, we can see that ﬁgemi,l and Bgemm
are consistent.
The simulation results reported in this section show that our proposed semipara-

metric estimators Bgemi1 and Bgemi2 perform well.

5.1.2  Binary Response CRC Models

In this section, I conduct simulations for binary response CRC models. I compare

the estimators as in section 5.1.1 with y;; substituted by W I generate y;;
by

Yir = L(vie + Boi + @it fri + wie > 0), (i=1,.,nt=1,..,T;T=23)

where Go; = Bo+oi, f1i = Pr+aous, Bo = 0.5, B1 = 1, 2 isii.d. with Gamma(1,1/3),
and ug is i.i.d. with Uniform[—0.5,0.5]. ag; and «; are generated in the following

ways, where Qp; = Wo; — E(UJOZ) and 1y = Wi — E(wh)

DGP5: vy is independent of ag;, ay; and wy, and distributed as Uni form[—4, 4],
wo; = (. — D* + s, and wy; = (5. — 1)+ In(Z;. + 1) + 0y,

DGPG : v; is independent of «ag;, ay; and u;, and distributed as Uni form[—4, 4],
wo; = (. — 1)* +no;, and wy; = sin(37;.) + N,

DGPT:  wy = ;. +wy, where wy ~ Uniform[—4,4],
wo; = (. — D* + s, and wy; = (5. — 12+ In(Z;. + 1) + 0y,

DGPS:  wy = T2 + wy, where wy ~ Uniform[—4,4],

Wo; = (fl — 1)4 + Nois and Wy = 8111(3;?:1 ) + M,

where z;. =T7! thzl Ty, Noi and ny; are i.i.d. with Uniform[—0.5,0.5].
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K R ’AI‘ableA5.5 K
MSE of Bors, Bre, Bams Bsemit, Bsemiz for DGPS
MSE(S)
n Bors Bre Bam ﬂsemi,1 ﬁSemi,Z

100 | 0.0231 | n/a 0.7049 | 0.0288 | 0.0474
200 | 0.0133 | n/a 0.1123 | 0.0134 | 0.0298
400 | 0.0105 | n/a 0.0528 | 0.0070 | 0.0197

MSE(p)

ﬂOLS ﬂFE ﬂGM ﬂSemi,l ﬁSemi,Q
100 | 0.6119 | 0.4586 | 15.2617 | 0.4788 | 0.6449
200 | 0.5513 | 0.3767 | 3.5648 | 0.2706 | 0.3271
400 | 0.5156 | 0.3262 | 1.7518 | 0.1812 | 0.2069

R R ’AI‘ableA5.6 R
MSE of Bors, Bre, Bams Bsemit, Bsemiz for DGP6
MSE(f)
n Bors BrE Bam ﬂSemi,l 5Semi,2

100 | 0.0225 | n/a 0.7078 | 0.0294 | 0.0489
200 | 0.0114 | n/a 0.1019 | 0.0135 | 0.0302
400 | 0.0086 | n/a 0.0539 | 0.0072 | 0.0195

MSE(f)
Bors | BrE Bam | Bsemi | Bsemi 2
100 | 0.4491 | 0.3688 | 14.2614 | 0.4306 | 0.6242
200 | 0.3794 | 0.2820 | 3.0915 | 0.2419 | 0.3166
400 | 0.3413 | 0.2341 | 1.6976 | 0.1602 | 0.2064
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. X ’]_‘ableA5.7 R
MSE of Bors, Bre, Bam, Bsemis Bsemiz for DGP7
MSE(3)
n | Bors | Bre Bam | Bsemin | Bsemi2

100 [ 0.0230 | n/a 0.7132 | 0.0289 | 0.0461
200 | 0.0144 | n/a 0.1083 | 0.0139 | 0.0294
400 | 0.0112 | n/a 0.0496 | 0.0072 | 0.0192
MSE(B)

Bors | BrE Bam | Bsemin | Bsemi2
100 | 0.6083 | 0.4543 | 15.7561 | 0.4661 | 0.6270
200 | 0.5699 | 0.3879 | 3.7572 | 0.2681 | 0.3204
400 | 0.5269 | 0.3356 | 1.7287 | 0.1821 | 0.2013

R R ’AI‘ableA5.8 K
MSE of Bors, Bre, Bams Bsemit, Bsemiz for DGP8
MSE(S)
n Bors Bre Bam ﬂsemi,1 ﬁSemi,Z

100 | 0.0220 | n/a 0.7349 | 0.0292 | 0.0477
200 | 0.0125 | n/a 0.0970 | 0.0144 | 0.0306
400 | 0.0088 | n/a 0.0524 | 0.0073 | 0.0193

MSE(p)
ﬂOLS ﬂFE ﬂGM ﬂSemi,l ﬁSemi,Q
100 | 0.4434 | 0.3668 | 14.7899 | 0.4226 | 0.5975
200 | 0.3898 | 0.2946 | 3.2012 | 0.2448 | 0.3160
400 | 0.3385 | 0.2319 | 1.6847 | 0.1571 | 0.1958
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The simulation results are reported in Table 5.5, Table 5.6, Table 5.7 and Table

5.8. We can see that the semiparametric estimators we proposed perform well.

5.1.3 A Truncated CRC Panel Data Model

In this section, I conduct simulations for the truncated CRC panel data model.

I generate y;; by

v, = Y1(yvi + Boi + xitfri + uie > 0), (t=1,..,nt=1,..T, T =3)

Yie = Ynlyi >0,

where ,@01' = ﬂo + ;g , ﬂli = 51 + 14, ﬂo = 05, ﬁl = 1, Y= 05, it is 1.i.d. with
Gamma(1,1/3), and w; is i.i.d. with Uniform[—0.5,0.5]. ag; and «ay; are generated

in the following ways, where ag; = wo; — E(wp;) and ay; = wy; — E(wy;).

DGP9: vy is independent of ag;, ay; and uy, and distributed as Uni form[—4,4],
wo; = (. — D) + s, and wy; = (5. — 12+ 1In(Z;. + 1) + 0,
DGP10 : vy is independent of ag;, a; and uy, and distributed as Uni form[—4,4],
wo; = (- — 1)* + s, and wy; = sin(3z;. ) + N,
DGP11: vy = Z7. + wy, where wy ~ Uniform|[—4,4],
wo; = (T — D) +ngs, and wy; = (5. — 1D+ In(Z;. + 1) + n,
DGP12: vy = Z72. +wy, where wy ~ Uniform|[—4,4],

Wo; = (i’z — 1)4 + Noi and Wi = 8111(3@ ) + M,

where z;. = T7! Zz;l Tit, Noi and ny; are ii.d. with Uniform[—0.5,0.5]. T use
2 =T;., k=0.5 and k' = 2 for estimators in (4.3) and (4.4).
The simulation results are reported in Table 5.9, Table 5.10, Table 5.11 and Table

5.12. We can see that the semiparametric estimators we proposed perform well.
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Talgle A5.9
MSE of 4, By, (1 for DGP9
n | MSEQ) | MSE(By) | MSE(%)
100 | 0.0029 0.0330 0.8655
200 | 0.0013 0.0164 0.6551
400 | 0.0006 0.0099 0.5321
Talgle ;5‘10
MSE of 4, By, £ for DGP10
n | MSE(®) | MSE(By) | MSE(3,)
100 | 0.0030 0.0334 0.8101
200 | 0.0014 0.0191 0.5537
400 | 0.0007 0.0110 0.3952
Talzle §.11
MSE of 4,, By, (1 for DGP11
n | MSE(Y) | MSE(By) | MSE(B)
100 | 0.0029 0.0307 0.8698
200 | 0.0013 0.0162 0.6612
400 | 0.0006 0.0097 0.5236
Tal?le 15'12
MSE of 4, By, 81 for DGP12
n_ | MSE®) | MSE(So) | MSE(S)
100 | 0.0031 0.0335 0.8373
200 | 0.0014 0.0182 0.5735
400 | 0.0007 0.0101 0.4084
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5.2 An Empirical Application

In this section, I use the linear CRC panel data model to reexamine the return

of on-the-job training. I consider the following simple wage equation

log(wageir) = Boi+Prit+ Paitenurey+ Pseducy+ Byuniong+ Psitraining;+uy. (5.2)

Here, (y; is the fixed effects term which captures the time invariant characteristics
of individuals, for instance, gender. I include a time trend to capture the individ-
ual wage growth. tenure; denotes weeks an individual has worked for the current
employer, which describes the working experience. 1 use edu; to denote years of
schooling, union; to denote the union status of the individual, which is also an im-
portant factor for the wage, and training;; to denote accumulated hours spent on the
job training until time ¢. Then [s; is the return from joining the union, and fg; is the
rate of return from the job training. Though some people took the job after finished
the education, the years of schooling occasionally change for some other people, so I
include an education term in the equation.

We know that people make decisions on whether to join the union depending on
how much benefit they can get from this activity. Thus, there exists a correlation
between uniony and [(s;. From the theory of human capital, we know that the
marginal return of the job training is diminishing as the level of the training increases.
Therefore, there is a correlation between training; and 5. These make (5.2) a linear
CRC panel data model. Also, random coefficients are used to capture unobserved
heterogeneity.

I use 1979 cohort data from the National Longitudinal Survey of Youth (NLSY).
The 1979 cohort data in NLSY is a data set of 12,686 individuals who were aged 14
to 21 in 1979, and interviewed every year from 1979 to 1994, and every two years
after 1994. In 1988 and after, individuals were asked about the spell of their job

training, i.e., weeks they spent on the training since last interview and hours per
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week spent on the training. I use the product of the weeks and hours to calculate
the increment of hours spent on the job training since the last interview. The data
also include other information about individuals, such as hourly wage, tenure, union
status, years of schooling, etc.

For the estimation of (5.2), I take first difference and get that

log(wage;) —log(wage;—1) = [ + Paildtenurey + By Aeducy + By Aunion;

+B5i Atraining; + Aug, (5.3)

where AA; = Ay — A;p—1. The reason I do the first difference is that I can only
observe the increment of hours spent on the job training since the last period, not
the accumulated hours. Also, it helps me to get rid of the fixed effects term [y;.
Then I can use the OLS approach to estimate (1;, Bo:, B3, [uis B and Bg; which are
population means of the random coefficients in (5.3), which is equivalent to the first
difference estimators for (5.2). I also use the nonparametric method I proposed in

(2.15) to estimate (5.3). I report the result in the following table.

Table 5.13
Estimation results of (5.3) by OLS and nonparametric methods

Variables First difference estimates Nonparametric estimates
Time trend 5.37% 5.38%
Tenure (weeks) 0.025% 0.017%
Education (years) 2.66% 4.46%
Union 11.47% 16.24%
Job training (per 60 hours) 0.42% 3.16%

Time range: 1988 - 2008 (14 interviews)
Sample size: 3287

I use the data of 3287 individuals who took job training during 1988 to 2008.

From table 5.13, we can see that the first difference estimators underestimate the

www.manharaa.com




48

rate of return from the job training and joining the union. This is consistent with
the discussions in the literature, e.g. Frazis and Loewenstein (2005). Using my
nonparametric method for correcting the correlations, I get the return of joining the
union is 1.4 times as much as the one estimated by the first difference method. Also,
the estimate of the return from job training based on my method is 7 times as much
as the one estimated by the first difference method.

From the estimation results, we can see that the yearly increase rate of wage is
5.38%. The increase rate of tenure is 0.017% per week. The reason this is small
is that for most people who continuously work for a same employer, the tenure is
proportional to the difference of time. So part of the increase from tenure is absorbed
in the yearly increment. Moreover, we can see that there is no obvious nonlinear effect
of the tenure due to the similar reason as tenure. The rate of return of education
is 4.46% for one year more education. Also, I find that the return from joining the
union is 16.24%, and the rate of return from job training is 3.16% per 60 hours
training. The result for the rate of return from job training is close to the result in
Frazis and Loewenstein (2005) which is 3-4 percent for 60 hours of formal training,

the median positive amount of training.

Table 5.14
Estimation results of (5.2) with nonlinear functional form in training

Variables First difference estimates
Time trend 5.52%
Tenure (weeks) 0.025%
Education (years) 2.69%
Union 11.41%
Job training (per 60 hours) 2.79%

Frazis and Loewenstein (2005) proposed to use an optimal functional form which
is (T°% —1)/0.35 for NLSY 79 data for the training variable and use the fixed

effects estimators. I use the functional form they proposed and the first difference
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estimation to estimate the data I gathered, and the results are reported in Table 5.14.
We can see that the estimation result is similar as the one from the nonparametric
estimation I proposed.

Overall, the estimator I proposed can make a difference compared with the usual

first difference estimation. The magnitude of these values are very reasonable.
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6. CONCLUSION

In this dissertation, I discuss the identification and estimation of linear CRC
panel data models, binary response CRC panel data models, and a truncated CRC
panel data model. I use the linear CRC panel data model to show how I deal with the
general correlation between random coefficients and regressors in the CRC model.
Also, the linear CRC panel data model has usefulness in its own for the analysis of the
average treatment effect. Further, I extend the idea to the binary choice CRC panel
data model. The identification of the binary choice model is different from the linear
model. I base my identification result on the special regressor method. Moreover,
I construct the y/n consistent asymptotically normal semiparametric estimators for
both models. Further, I did simulations and an empirical application to show the
advantage of our estimators.

There are some extensions I am considering. In the example given in section
2.1, the regressor is a discrete variable but I mainly discuss the identification and
estimation results for continuous variables in this paper. Though, similar discussions
can be made by using kernel smoothing method for discrete variables as in Li and
Racine (2007), I leave the rigorous derivations for future research. In addition, it is
desirable to construct tests for CRC panel data models. I also leave this for further

research.
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APPENDIX A

Proof of Theorem 2.2.1: I first consider the local constant estimation method.

For any z € €),, we have

n T -1 a7
éLC(Z) = [Z Z xjsx;'l;Kh,z]-zlen (Z)] Z Z xjsyjsKh,zjz]-an (Z)

= 0(2)+ Z > xjsa:LKh,zjzlan(z)] Z D @) (0(z) — 0(2)) + €]
XKh,zjz]-an (Z)
= 0(2) + A (2) 7 [Ana(2) + Ans(2)] (A1)

where

n T
1
Anl(z) = nTHZijsx;’l;Kh,ijlsn(Z)u

j=1 s=1
1 n T
Anle) = = 303w (0z) — 0() K1, (2)
j=1 s=1
1 n T
An3(z) = nTH ZzszejsKh,zjzlan(z)a
j=1 s=1

with H = hy---hg and Ky, .. = K((z; — 2)/h) = [T, k((255 — 25) /hs).
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Using (A.1) we have

R 1 < .
ﬁLC - EZQLC(%)

By Lemma A.1.1 we have uniformly in z € €2,
A (2)™ = m(2)" + Op([[A]]” + (nn/(nH))'?),

where m(z) = T30, Elzjeaj|z; = 21 f(2).

So we have
— Z Anl Zl Apo Zz) + An3(zl)]
= — Z m Z»L 1 n2 ZZ) + A’ﬂ3(zl)] + Tin
= Bnl + Bn2 + 777’”
where

1
Bnl = n 5 mzz n2 zz

—1§ : 1
Bn2 = n mzz n3 Zz

= p(||h||” + (Inn/(nH)) )0 (| Az (20) || + | Aus () [)-
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B, and B,,5 correspond to ‘bias’ and ‘variance’ terms, respectively.
)

We first consider B,,;. Note that B,,; can be written as a second order U-statistic.

(n—l n(n—1)
Bnlzn TL—]. Zanlm—n —Unla

zl];éz 2

where

Mq

Hp iy = - 2;) xysx (9 —0;)1 En(zi)—l—m(zj) TisT; (9 9) en(zj)]Kh,jh

@
Il
—-

Ky ji = Kn((2; — z;)/h). Using the U-statistic H-decomposition we have

Unl - nl 1] + — Z nl,i nl z)]

n(n—1) Z Z ntij = Huvi = Hug + E(Hp )]

11]>z

where Hnl,i = E[Hnl,ij’wi]a w; = (l“i, Zi) = (%’1, ey LT Zi)-
Since ||h||/e, — 0 and the kernel function K(-) has a compact support, the
trimming function 1., (z;) will ensure that all of the points which have boundary

effects are excluded from our estimated locations. We have that

T
E[Huyl = (TH)™  Elmy aa)(0; — 6:) K]
s=1
T
= (TH)™ Y E[m; " E(xjer ]2 (0; — 0:) K 5]
s=1
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= H7'Elm;'m;f;(0; — ;) K]
= H~ //m Yim(0; — 0,) Ky i;dzidz;
_ / / my fim(z; + ho)(0(z + ho) — 0, K (v)dvdz
“ w2 oga

kl k2
I=1 k1 +ko=1,ko#£0 0% 0z

q
= Z h Birc + Op(||h]|"1h),

=1

. 1 —1/0k1m;\0k26;
where Bl,LC = Hv Zk1+k2=l’7k25£0 WE |:TnZ ( 8zlklz)( azlk; ):| ’

Also, we have

E |:<% Z[Hnl P E(Hnl z)]) (% Z[Hnl,i - E(Hnl,z)]) :|

= Var 2 i[Hnl,i - E(Hnl,i)]]

n
=1

4 n
= 3 Z Var[Hp; — E(Hy)

_ % DB [[Hons = E(H )] [Huri — E(Ho )] "]

= O(n '[[AI™),

and

n _ 1 Z Z nligj — nl i Hnl,j + E(Hnl,ij)]

zlg>z
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= ’I’L — 1 YY) Z ZVCLT nlgj — nlz - Hnl,j + E(Hnl,ij)]

11]>z

T (1) Z ZE[ ntij = Huri = i+ E(Hu )] | Huvig = Hua

=1 j>1
-
— n1,j+E(Hn1,ij)] ]

= O(n *H'[[h]]").

Hence, By = Y0, i Buse + Op([[1][*** + n ™ H=Y2[ h]).

We decompose B,,5 into two terms
Bpa = Bpa + Brao,

where

n T

Bn2,1 = 2TH -1 Z Zm Zz mzsezs (0)1£n (Zz)y
i=1 s=1
n n T

Bn2,2 - ( 2TH 1zzzm Zi x]SE_]SKh]ZIEn(ZZ)
i=1 j#i s=1

It is easy to see that E[Bps;] = 0 and

E(||Bu2all”] = (n'H?)"'O(n) = O((n*H?) ™).

Hence, By = O,((n*/2H)™1).
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B,29 can be written as a second order U-statistic.

_on(n—1)

2 Un2 )

Bn2,2 =n

where Uny = by SO0 D00 Husijy Huoyy = (TH) P00 (my w651, (2) +

m iseisle, (25) Knij-

Since U2 has zero mean, its H-decomposition is given by

Un2 = Una1 + Upaa,

2 n 2 n n
where Un2,1 = = Zi:l Hn2,i and Un2,2 = —n(n—l) Zi:l Zj>i [HnQJ'j
Hn2,i = E[an,ij|wi], w; = (fUi,Oéi,Zi,Ui) = (%1, sy TgTy Qi Z4y Uil - -

to show that U,z is the leading term of Ups.

1

60

- HnQ,i - Hn2;j]7

S ur). 1t is easy

n T
Un21 = Z Z E [(mi_lxjsejslsn(zi) + mflxis@slsn (Zj))Kh,ijlwi}

nTH

i=1 s=1

1

n T
- TH Z Z E[(m;lxjssz(aj — B(ayl2))1e, (2:) +my wjsuysle, (2)

i=1 s=1

—i—m;lxisx;(ai — E(Oél|21))15n (ZJ) + mj_lxisuislgn (Zj))Kh,ij|wi]

1

n T
= "TH Z Z (E[mj_lKthz]xlsx;(al — E(OZZ|21))15H (ZZ) + Uislgn (Zl)

i=1 s=1
E[mj_ll’isKh’ij |wz])

n T

- nT Z Z (mi_lf(Zi)ZI?isti—l;(Oéi — E(a;|zi)) + uismi_lxisf(zi)) 1., (z)

(A.2)
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It is easy to evaluate its second moment E|||Un2|?] = (n*H?)"'n?0O(H) =
O((n*H)™'). Hence, Upgo = O,((nHY?)™1).

Summarizing the above, we have shown that

N 1
Bre = - Z} (z;) + Brc
1 n T
_— -1 Neo 2 V(e — . ol ) )
+nT ; ; (mz f(zz)wzswzs(az E(a]z)) + Ui, a}wf(zz)) 1., (z)

+Op((nH1/2)—1 + ||h||1/+1 + ((nHl/2)—1 + ||h||l’)(||h||y + (lnn/(nH))l/2)).

(A.3)
Also, by Cauchy-Schwarz inequality we have that

1 2
Bl YoX (i @ wir s — Blaalz) + wiom i f(2)) 7 (1= 1)

i=1 s=1

< A{E(lm; " f(z)wisw (0 — Elailz:)) + wiemy i f(2) ) P(2i € SA\Q2)}2,

K3

where 1., ; = 1.,(2;), and A®? denotes AA" for any matrix A. Since the density
function f,(z;) of z; is bounded and the volume of the set that is within a distance

e, of 08, is proportional to €,, we have that P(z; € S$;\Q.) = O(e,,). Hence,

(mi_lf(zi)xisx;’l;(ai — E(ailz)) + “ismi_lxisf(zi)) 1En(zi))

= Var (LT Z Z (mi_lf(zi)x,-sxz;(ai — E(ai)zi)) + u,-smi_lxisf(zi))> +o(1).
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Hence, by noting that § = F[0(z;)] and letting v; = 0(z;) — 3, we have

Vn (ﬁLC -0 - BLC)

n n T
- 1 Z v _|. Z Z 2wz (i — Elai|z)) + uismi_lxisf(zi))
Vn i=1 r=Za
x1.,.i(%) + Op((n)
= N(0,Vie) (A4)

by the Lindeberg central limit theorm, where

T
Vie = Var(v)+T*Var (Z(m;lf(zi)xisx;(ai — E(a;|zi)) + uismi_lxisf(zi))>
;1
= Var(6:)+T *Var (Z m; (2w (o — E(ai|zi))>
. s=1
+T *Var (Z uismi_lxisf(zi)>
s=1

and ¢, = (nH) =2+ (nl|h][>#2)1 2+ (nH) =2 ]|+l Bl +/nl| Al (Inn/ (nH)) 12

+ Al (nH) 72 + (nH) 72 (Inn/ (nH)) 2 = 0,(1).

Lemma A.1.1. Define A (2) = 75 25—y ST s K 2oy andm(z) = T ST

Elzjsx) |z = 2|f(2), where K. . = [T, k (Z"’h:zl), then under Assumptions Al-

A4,

An(2)™h = m(2)™ + O, (JIB]” + (Inn) 2 (nH) /%)
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.....

0S.}, 08, is the boundary of the compact set S,, €, — 0 and ||h|/e, — 0, asn — oo.

Proof: First, we have
E[Am(2)] = m(z) + O (I|A]]"), (A.5)

uniformly in z € Q,. Following similar arguments used in Masry (1996) when deriving

uniform convergence rates for nonparametric kernel estimators, we know that

nn)'/?
Au(e) = Bl ()] = 0, (252 ). (A6)

uniformly in z € €),.

Combining (A.5) and (A.6) we have
A (2) = m(=) = Oy (111" + () (nir)™?), (A7)

uniformly in z € §2,.

Using (A.7) we obtain

A ()0 = Im(2) + A (2) — m(2)]
= m(z)"" = m(2) " [Au(2) = m(z)]m(z) " + O, ([ Am(2) — m(2))])

= () + 0, (I + ()2 (o))
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which completes the proof of Lemma A.1.1.

Proof of Theorem 2.2.2: Now, we consider the local polynomial estimation

method.

The minimization of (2.18) leads to the set of equations

tni(2) = > hFb(2)snisn(z), 0 |i[ < p (A.8)

0<|k[<p

where

n T %
1 2 — %
tn,i(z) = nTH Z ijsyjs ( h ) Kh,zjza

j=1 s=1

1 L 2 — Z itk
Sn,z'-l-k(z) = nTH szjsx;’l; < Zh > Kh,2j2~

7j=1 s=1

We put the set of equations (A.8) into a lexicographical order. Let N, = (TquﬁIl)
be the number of distinct g-tuples ¢ with |i| = r. Stacking ¢,,(z), |i| = r up into
a column vector according to these N, ¢-tuples by a lexicographical order, i.e.,
(0,...,0,r) is the first element and (r,0,...,0) is the last one. Denote this vec-
tor by 7,,(2). Let 7, = (Th0(2)", 71(2)", ..., Tup(2)T)T. Note that the column
vector 7,(z) is of dimension N = >>7 /N; x d. Similarly, we can arrange Wby (2),
0 < |k| < pintoa N x 1 column vector according to the lexicographical order of k as

~

0(2) = (bno(2)T,0n01(2)7, ... 6np(2)T)T. Finally, we arrange s, 4x(z) into a matrix

[o2H

(Sn,il, k| (2)) N xn, where columns are according the lexicographical order of 4 and rows
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are following the lexicographical order of k. Thus, denote the N x N matrix S,(z)

by
(Sn,O,O(Z) Spoa(z) - Sn,O,p(z)\
Sn(z) _ Snyl’()(Z) Sn,l’l(Z) s Sn’lyp(Z)
\Sn,p,O(Z) Snpa(z) - Sn,p,p(z))

Hence, 0(z) = Sp(2) 'mu(2). Let P, = e ® Ijq, where e; = (1,0,...,0)7 is a
(3>°F o N;) x 1 vector containing the first element as 1 and others as 0, Ixq is the

d x d identity matrix, and ® is the kronecker product. Then 0,p(z) = P,0(z).

Using similar arguments in Masry (1996), we can show that

Su(z) = S(2)+ O, (|[h]| + (Inn)"/(nH)"'/?) |

uniformly in z € €., where S(z) = (S}, jx/(2)) nxn has each element corresponding to
S, (2), for the corresponding element ;4 (2) in S(2), si1x(2) = TP S0, Elzjsx)|z

)ik and iy — [ K (u)du.

Hence,

Su(2)™t = S(2)7" + Oy (|IR]] + (nn) 2 (nH)~12)
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We can write t,,,;(2) as

1 2 — % ’
tn,z(z) = M—HZijsyjs (T) Kh,zjz

Also, we have that

~

0(2) = 0(2) + Su(2) " (Cr1(2) + Cia(2)),

where 0(z) is corresponding to 6(z) with elements from h¥D(z)/k! instead of

hEby(2), Cpi(2) and Cpy are N x 1 vectors with elements from th,=mTH)™' Y0,

Yoy 552 (0(2)) = Yocpp 1 (DF0(2)) (2 — 2)F) (252)" Kiyzyz and (nTH)™H Y20,
Zle Tjs€js (Zl—;'z)z K}z, respectively.

Since 0.p(z) = Pyd(z2), we have

BLP = %;éLP(Zi)
- %; 9(’22) + % ; PlSn(zi)_l [Cnl(zz) + an(zz)]

= % >_00) + % > PiS(a) " [Cur(=) + Cra(z)] + (s:0.),

where (s.0.) denotes terms with smaller orders.
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Similar as in the proof of Theorem2.2.1, we have that if p > 0 is an odd integer,

1 ¢ - pih® _
i=1 |k|=p+1
O (|1 ]P* + 0~ H2 )
= Brp+ Op([[B|"*2 + 0~ HZY2 AP,

%Z P1S(Zi)710n2(2’i) = % Z Z PIS(Zi)ilrisxiTs(O‘i — B(ai|zi)) f(2)

i=1 s=1

+% > PiS(z) M f (20T

i=1 s=1

+O,(IBI1°/v/n + (nHY2) ™),

where M; = M(z;) = (Mopi1(2:) ", Mipia(zi) ", ooy Mppia(2:) )T, Mjpa(2) is cor-
responding to Sy, j,+1(2) which is similar as elements in S,(z), ©; = ©(z;) which
has the elements from (1/k!)D*0(z)|.., using the lexicographical order, and I';, is a
N x 1 column vector with elements from z;,u, following the lexicographical order.
The elements in M (z) are from sy qp41 = 771 23:1 Elrjsx) )z = 2] f(2)ftaspsr- If
we denote S for the N x N matrix which has the elements from p,1, 0 < |a| < p,
0 < |y| < p, and M for the N x 1 vector which has the elements from jiq4p41 fol-
lowing the lexicographical order introduced earlier. We have that S; 'M; = S~'M.

Thus Bp = PLS™'M Yy, A [0;].
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If p > 0 is an even integer, we have that

ZP -1 . N’khk -1
— 1 zz Cnl Z’L) - Z Pl M®:|

|k|=p+2
+0p(||h||”+4 +n” HTY|R|PF2)
_ ph*
= PST'M Y i Elel
|k|=p+2

Op([RIPH +n= H 2| B]|P*2)

= Brp + Op(|[Al[P** + 0~ HV2||0|P*2).
Therefore, we have that

Vn <BLP - B - BLP)
1 & —1
- % Z(ei - \/_T Z Z PiS(2) i) (a; — E(ou]z)) f(2)

i=1 s=1

Z Pl Zz uzsf Zz) S + Op(C’n)

zlsl

4, N(O, Vip) (A.9)
by the Lindeberg central limit theorem, where

Vie = Var(6) + T *Var (Z PyS(2) i) (a; — E(Oéi|2’i))f(2’i)>

s=1

T
+T*Var <Z Pls(zi)_luisf(Zi)Fis>

s=1
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Go = (nH)™2 4 IRV + (nH) TR+ /a2 (nn/ (n )2

HIR (nH) 2 4 (nH) ™V (Inn/ (nH))Y? = 0,(1)

if p > 0 is an odd integer, or

G = (H) 2+ (AP 4 (H) TR+ V/nl [P+ /][R

(nn/(nH)'Y? + |l (nH) ™2 + (nH) 2 (nn/ (nH))'? = 0,(1)

if p > 0 is an even integer.
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APPENDIX B

Proof of Proposition 3.1.1: Since ; = 5+ a4, g(z;) = E(a;|xiy, zi) = E(a]z),

we have

Yie = 1(vy+2,08+ 7405+ uy > 0)
_ 1 T T T
= 1(vg +x30+ x;9(2) + 2y (i — g(2:)) + ui > 0)

= 1(Uit + :cthG(zz) + € > 0),

where 0(z;) = B+9(z), and ey = z;, (a;—g(2i)) +ui. Since E(ug|xy, z;) = 0, we have
E(euli, zi) = Elzg (i — 9(z0))|wie, 1] + Euiel it 21) = w3 El(qi — 9(2))|wir, 2] +
Elui|xi, 2] = 0.

From Assumption C2, we have the conditional distribution F,, (e;|vit, i, 2;) of
(€it|vit, Tit, 2i) = Fre,, (€] Tit, 2;). Also,

e;r conditioning on (vy, x;, 2;) satisfies that F,,

(it — L(vie > 0)]/ fr(viewie, z;)  if vy € [Ly, K4

*

yit = )
0 otherwise
then
E(yilzit, zi) = E[(yir —1(vie > 0))/ fe(vie|xie, zi)|wit, zi]
Kt Blyie — 1(vig > 0)|vie, Tit, 2
= / [yzt ( u,t ] )| _lt & Z] ft(%t\mit,zi)dwt
L ft ('Uztlxzt, zz)
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Ky
= / / ’Uzt -+ l‘zt (Zl) + e > 0) — 1('Uit > 0)]dFeit(eit|'Uit7 Tit, Zi)d’l)it
L

t Qe,
/Qat

= / /L [(L(vig > sit) — L(vie > 0))1(si¢ < 0) + (L(vie > sit) — L(vie > 0))1(s3 > 0)]

t
/ 1(vit > sit) — L(vie > 0)]dvirdFe,, (€it|xit, zi)  Let (s = —xge(zi) —ejt)
Ly
dvidF,,, (eit|Tit, i)
_ / / [sst < vt < 0)1(six < 0) — 1(0 < w3t < s30)1(s52 > 0)]dvsedFo, (est|it, )
0 Sit
_ /Q [1(ss < 0) / Ldvg — (s > 0) / Vdvi]dF,, (ex|it, =)
et Sit 0
= / —sudFe,, (eit|Tit, 2i)

Qe,

= /Q (240(2) + ei)dFe,, (eit|zir, 2)
et

= 240(2) + B(eit|vit, 2i)

This completes the proof.
We give some shorthand notations first. These notations will be used throughout

the proof of Theorem 3.2.1. Let

Kysjo = Kp(zj—2), Kp.ji=Kp(z; —2), Kp i = Kip(zi — zj),
Kh’,z,jk = Kh'(zj - Zk)7 Kh’,z,kj = Ky (Zk - Zj), Kh’,z,kz’ = Kh’(zk - Zi),
Ky = Kp(zi—21), Knpookj = Kn(Uke — Vi, Tie — Tje, 26 — 25),

Khozopi = Kn(Vke — Vi, Tt — Tty 26 — %),
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Kh,vxz,z’j = Kh(Uit — Vjt, Tit — Lty 24 — Zj),
Khoeeje = Kp(vjt — Ukt Tt — Tia, 25 — 21),
Khoweitk = Kn(Vie — Oty Tt — Tig, 2 — 21),
Kh,vwz,ji = Kh(vjt — Uity Tjt — Tty 25 — Zi);

Kpozomj = Kn(Umi — Vje, Tt — T, 2m — 25), Koy = K (Tme — Tjt, 2m — 24),
ft,v|wz,j = ft(th|$jt,Zj)7 ft,v|xz,j = ft(th|$jt,Zj)7 ft,vwz,j = ft(%’t,%‘uzj),
Jtwzzj = ft(vjt, Zjt, Zj)7 Jtwzzi = Je(vie, v, 21), Jtwzz ke = Je(Ukts The, 21),
ftjvlzz,j = [ (v e, 2), ft,_vlmz,i = fi (Vi it 7)), ftjvlacz,k = [ (Vkt, Th, 21),

ft,xz,j = ft(xjtazj)a ft,wz,j = ft(xjtyzj),
1., = 1. (v, T, 2), 1n0 = 1o (Vi Tit, 2i)5 Loy e = 1y (Vkt, Tt 210),
9]‘ = H(Zj), 91 = Q(Zi), Ok = G(Zk),

T
m; = m(z)=T" ZE[azlsx;]zl]fz(zz), m; =m(z;), my =m(z).

s=1

Proof of Theorem 3.2.1: For z € ()., let

n T
An(z) = (TH) D N wjw ) K jls, e, (2),
j=1 t=1
T n R
Ap(z) = (nTH)™Y (%t yjt — (e > 0)) K 2,5/ ft,v|xz,j) 1.1, (2).
t=1 j=1
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We have that

OLo(z) = An(z)""Ana(2)

T n
frolaz,g
= Anl( nTH/ IZZm]tE y]t|m]t7zj)Kh’ 2,5z AlezJ].ijlgn(Z)

=1 j=1 tolez,j

T n ft | .

+An1(2) nTHI ! Z x]t y]t ygt|xjt7z]))Kh’ z,jz o 1Tn,j1€n('z)
=1 j—1 t,v|zz,j

= 0(z)
w|zz,
+An () (TH) T Y ) @iy ( L 9<z>) KL 1e. (2)
t=1 j=1 ftvlwz,J
T n ft | .
Tz,

+An1(2)" (nTH') 122%15 yjt ygt|xjtazj))Kh’ ENEN Jlfn,jlen(z)

=1 =1 tolrz,j
T n ft |
= 0(2) + A (2) ' (nTH) DY O a0, - 0(2) 70 ACLLEDY (I T W 69
t=1 j=1 tolez,j

T n ft | .

—Anl( nTH/ -1 ZZx]tthﬁ Kh’ 2.z ( ﬂ) ]-Tn,j]-En (Z)
t= 1] 1 t,v|ar:z,j

lzz,

+An1(2) nTH' - szjt y]t yjt’w]t7z]))Khl 2,27 ]17'n7j15n(z)

t= 1] 1 t,’U|.’EZ,j

0(2) + Ap1(2) L An3(2) + A1 (2) T Apa(2) + Ani(2) HAns(2),

where
T
1 - ft w|zz,j
Ans(z) = (TH) S wjai(0; — 0(2)) 752 Ky jalr, 1, (2),
=1 ]:1 ft w|zz,j
= i lwz,j
— ,U|TZ,
Au(z) = —(nTH)) 1ZZwﬁwﬁe<z>Khaz,jz (1—A—J> 1, 51e,(2),
t=1 j=1 tolzz,j

Jtwlez,j
Ans(2) = Aum(z)"'(nTH') 122% Vi — Elwie 2) Kn e 2591 010 (2).
t 1] 1 t,’U|(1)Z,j
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By Lemma B.1.2, we have uniformly in z € €,
Ani(2)™ = m(2) 7+ O, (IIN])Y + (nn) 2 (nH')™2) |

where m(z) = T7! Zle Elzjsr |z = 2] f.(2).

Then, we have that

N 1 o
BLC’ - E;QLC(Zi)
1 & 1<
= =) O+ —> Au(z) " [Au(z) + Ana(z) + Ans (2
n;(g’_i_n; nl(zl) [n3(zz)+ n4(zl)—|— nS(Zz)]

1< I~
= B+ n ;9(%) + o ; my; - [Ans(2:) + Ana(zi) + Ans ()] + 10,

where n, = O, (||| + (Inn)*/2(nH")~/2) Op([[ Ans(20) | + | Ana(zi) | + | Ans (2)]])-

Since fivjzzj = J;”#, where
t,xz,j

n n
froweg = (MH)™' Y " Kpugeny and frpey = (nH)™ Y Kj o 0
m=1

m=1

we have

f,v xz,j 1 1
Jteles o q 4 Frofaz (= _ )

ft,v|:vz,j t,v|zz,j ft,v|xz,j

ft,vzz,j - ft,vxz,j

1 + ft,xz,j - ft,xz,j +

ft,xz,j ft,vxz,j
(ft,va:z,j ft,xz,j - ft,vwz,j ft,xZ,j) (ft,va:z,j - ft,vxz,j)

ft,xz,j ft,vzz,j ft,vzz,j

+ . (B.1)
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Then, we have that

Bnl
e~
= E Zmz 1An3(2i)
T n
= = Zm_l (nTH'") -1 szﬁx]t 0:) K 2 jils, j1e, (%)
t= 1] 1
— t 9, t’ 7.
1 Zm N TH) LSS w6 — 0K, ,ﬂwlm,jlgnw
t= 1; 1 bz,g
t 2. t? 7‘
4= Zm nTH' Z Zxﬂtxjt )Kh’ z]zf VT2, ] f vITZ,] 1Tn,j18n (Zz)
=1 j=1 ft,vmz,g
T n ¢ ¢
D NN CZa) 3 e AT
=1 j=1 ft,xz,jft,vwz,j
X (ft,’t).’l)z,;\]‘ — ft,vxz,j) 17-n’j15n (Zz)

ft,vmz,j

Bpig + Bpi2 + Briz + Bpia.

First we consider B,;,;. We have

n

T
Bpig = —Zm (nTH') 12 %tx 0:) Kn 2 jilr, j1e,(2).

t=1 j=1

Further, B,;; can be written as a second order U-statistic.

on(n—1) n(n —1)
Bnl,l =n B n_ 1 ;;Hnlu =n TUnla
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where

T
Hypgy = (TH)™Y [y wjew )y (6; — 0:)15, 10, (21)

gy (0; — 0,)15, 10, (2)] Kp i
Using the U-statistic H-decomposition we have

Unl = nlzj + — Z nlz_ nlz)]

n(n—1) Z Z ntig = Hus = Hp g+ E(Hpgg)]

zl]>z

where Hyy; = E[Hnl,z’j|wi]a w; = (V5, 4, 2) = (Vit, -+, Vi, Tits - - -, Ty 2i)-
Since €, > 7, and ||| /(e,—7n) — 0 and the kernel function K( - ) has a compact
support, the trimming functions 1, ; and 1., (2;) will ensure that all of the points

which have boundary effects are excluded from our estimated locations. We have

T
ElHn ] = )Y Elmy wpa) (05 — 0,) Ky i1, i1, (21)]
t=1

= Z Y Bire + Op(|1'[|"F),

=1
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= 1 —179%1m; 9%20;
where By rc = [ D kymv ko0 Tiiai £ {mi (W)(W)] . Also, we have

FE (% Z[Hnl,i - E(Hnl,z)]> <% Z[Hnl,i - E(Hnl,z)]>

i=1

2 n
= — Hn T E Hn A
Var - ;[ 1, (Hp, )]]
_ O(n_lllh/”2u), (B2)
and
2 n n
il ey DD Hungg = Hurg = Honj + B(H )]

i=1 j>i

4 n n
T 21y > Var [Huij — Huri — Huj + E(Hu )]

i=1 j>i

= O™ HH|N]?). (B.3)

Thus, Bui, = Op([1[]Y + (RH™?)H|]]).
Then, we evaluate B, 2 and B, 3, and by U-statistics Hoeffding decomposition,

we have that

Bua+Bug = Op(IIWI7 IR + WWIV RN +n R + (22 2)

<RNIAI -+ (¥ 2H 22 R

We omit the detailed derivation here to save the space. However, the procedure is

similar as the derivation of the order of B, 5 where the details are provided.
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For B, 4, we have

E(||Bn1all)
T ~ A
S TH/ —1 Z E(||m -T]tx (9 ei)Kh’,z,ji (ft,vwz,gft,:cz,j - ft,vwz,]ft,zz,J)
t=1 ft,xz,jft,vxz,j
(ftv:t:z ftvwz,')
J . 17'717.71571(’21)”)
ft'ung
f,vccz,'f,acz,‘ - f,vxz,'f,acz,‘
< (TH) ZE(Im Ly (0 — 0) i o il (z0) || Ltz ftens = Jtwazifras)
ft,xz,jft,vxz,j

> (ft,vmz,z ft,va:z,j)

ft,vmz,j

1

Tn,J

From Hansen (2008), we have

sup (v, 2) — filv,w,2)| = OIAI + ()2 (nH)2),
(v,2,2)EQuz 2
sup  |fulw2) = fulz2)| = O(IA]l + (nn) 2 (nd)12),

(2,2)E P> (Quaz)

where P,,(-) is the projection of Cartesian product. Hence, we have that B, 4 =

Op(IB IR + 13| Q) (n )= (1117 R )+ (1| ()= 22 2),

Let
1 n
Bn2 = _E Zmz_lAn4(Zz)
= = my ' (n\TH) Y Y wp)0iK - i (1 - f’”'“”) 1, 1., (%).
L t=1 j=1 ft,vlmz,j
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From the equation (B.1), we have

1— ft,'u|:vz,j - _ft,a:z,j - ft,wz,j . ft,vmz,j - ft,vwz,j

ft,v|mz,j ft,ﬂﬁz,j ft,vxz,j

o (ft,vzz,jft,zz,j - ft,vzz,jft,zz,j)(ft,vzz,j - ft,'vzz,j)

ft,zz,j ft,vzz,j ft,vxz,j

Hence,

B, = —- Zm nTH' Z ijtx]te Ky i ft,vzz,j — ft,'vmz,j lrn,jlen (Zz)

= 1 ] 1 ft,’l}EZ,j
fravg — fran,
—— Z m; ”TH/ Z Z xjtxgte Ky 2 ji m} 22 1.1, (2)
=1 j—1 twzj
1 Z m nTH, Z Z $]txjte Kh/ i (ft,vxz,jft,xz,j - ft,vxz,jft,xz,j)
=1 =1 ft,:vz,jft,vxz,j
X (ftfuzzaz - ft,vzz,j) 17-7“]' 16n (Zz)

f tvxz,j

= —Bn2,1 - Bn2,2 - Bn2,3-

First, we consider B3 ;. We have

Bz
§ : n—1 § : § : ft ,UTZ,] ft VX2, ]
= - m nTH .’L‘Jt.’L‘]te Kh’,z,]z 17-”7]'15",1'
t=1 j=1 ft T2, ]
T n —1 n
E n—1 E § : ( H) Zk:l Kh,vxz,kj - ft,vxz,j
= - m ’I’LTH :L‘]t:IJ]tG Kh/ 2,54 ]-Tn,j]-En,i
=1 j=1 ft,'umz,j

n T
= @THH)Y S NN my wjuw f0iKn 2 i (Knwwz ks = Hfrvesg) Fiotps Lri Lens
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n T

= (WPTH'H) 'Y > my wuw;0:Ky (0) (Kn(0) = Hfipazi) fipapilrailen
i=1 t=1

n n T
+(n*TH' H)™! Z Z Z m;! T4 0K (0) (K, howz ki — H ftowzi) f{vlwihmj 1.,
i=1 k#i t=1

n n T
+(PTHH) Y NS my wjew [ 05K 2 i (Ki(0) = H frwesg) frts jLrniLeni
i=1 j#i t=1

n n T
3 rrry—1 -1 T -1
+PTHH) ™Y NS om0 K i (Knwee iy — H frowzg) Fre Lo jlens
i=1 ji t=1

T
+(n3TH'H)_IZ Z Z Z m; @520 K 2 i (Knaz s — H froezj) f{lez,j

itj£k  t=1
X 1Tn 7j15n7i

= Bp211+ Bn212+ Bp213+ Bp2j1a + Bra1s.

It is easy to see that By 11 = O,((n*H' H)™'), Bu212, Bn213 and Ba ;4 can be writ-
ten as second order U-statistics, and B,2,1 5 can be written a third order U-statistic.
Also, by the Hoeffding decomposition, we have that Bys12 = O,(||h||*(nH')™1),
Busss = Op((nH) ™), and Buays = Op(h]7n ).

We can write Bua1s as Buo1s = 172> > > Un(vi, T4, 20, V), Tj, 25, Uk, Thy 21,

1<i<j<k<n

where

U (Vi x4, 20,05, T4, 25, Uk, T, 2)
T
= (TH,H)_l Z mi_lxjtx;;eiKh’,z,ji (Kh,vwz,kj - Hft,vwz,j) ftj’ulwz,j]‘Tn,j]‘En (zi)

t=1

T
+(THIH)_1 Z mj_lxitx;geth’,z,ij (Kh,vxz,ki - Hft,vxz,i) ft,_ulzm,ilTn,ilEn (ZJ)

t=1
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T
+(TH,H)_1 Z mlzlxjtx;'l;ekKh’,z,jk (Kh,vzz,ij - Hft,vzz,j) ft’_vlwz,j ]'Tn,j ]-an (Zk)

t=1

T
+(THIH)_1 Z mi_ll'ktmll—teiKh’,z,ki (Kh,vxz,jk - Hft,vzx,k) ftjvlzw,lenyk]'En (Z’L)

t=1

T
+(THIH)_1 Z mlzlxitx;'l;ekKh’,z,ik (Kh,vxz,ji - Hft,vxz,i) ft,_vlzz,i]-Tn,ilsn (Zk)

t=1

T
+(TH/H)_1 Z mj_lxktx;gl;eth’,z,kj (Kh,vmz,ik - Hft,vzx,k) ftjvlzx,k ]-Tn,k ]-sn (zj)~

t=1
Let w; = (vi1, - -, VT, Tits - - -, TiT, 2), by the Hoeffding decomposition, we have
3 n
Bioss = n(n(n—1)(n —2)/6)[B) + = Y (Eltalw] - B(v,)
i=1
6
+m > (E[¢n|wi,wj] — E[n|wi] — Ethn|w;] + E[%])

1<i<j<n

6
Jrn(n —1)(n—2) 2 (% — Eln|wi, w;] — Elibn|wi, w]

1<i<j<k<n

—ElYalwy, wi] + Elalwi] + Eltnlw;] + Elbalwy] - )]

Broisa+ Brojise + Bpoiss + Broisa

By standard calculations, we have

Buisa = (n7’n(n—1)(n—2)/6)E[¥a] = O,(||R]]"),

Buaase = (n*n(n—1)n=2)/0)> 3" (Elvalu] - B(,)
_ ! ZT‘l Z (m; ' Elzaxy|2)0:f-(2) — E[0;]) + Op(|h]]” +n71).

n
i=1 t=1
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Also, it is easy to see that
Buoiss = Op(n™), and Bua 154 = Op((n**H"2H'?) 7! |[n])).
Hence, we have that

n T
1
Bua = — > 173 (6= BB + O, (0 H'H) + ||l (nH)) ™" + (nH) ™
i=1 t=1

RN + 07t + (322 E2) B (B.4)

Similarly, we can show that

n T
1 - -
By = —= ST (0~ Bl0)) + Oy (0 H' )™ 4 A (')
=1 t=1
+(nH) T+ B+ 07t + (n3/2H’1/2ﬁ1/2)_1||ﬁ||)- (B.5)

Similar as the derivation of B4, we have Bz = O,(||h||* + (Inn)(nH)™' +
IRl IIR]Y + (Inn)n H-V2H-1/2).
Denote

§it = Ui — Bl e, 25).

By (B.1), we have
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T n

1 ft,'u|:rz,j
— —Zm (nTH") 1229% Vi — BE(Wjlwje, 25)) Kn 2 i 17,51, (2i)
t=1 j—1 t|xz,j
T n
-1
= —Zm nTH' 1ZZ$Jt§JtKh’ zgilr,.j 1c,(2i)
t= 1] 1
t? 7’ — t? 7.
+ Zm nTHI szjtgjtKh/ ’szmj—fjwzlen,jlan(Zi)
— 1] 1 ft,:cz,]
4= Zm TLTHI Z Zx]tgjtKh i ft,vwz,J — ft,vxz,] lelen (Zz)
— 1J 1 ft,vmz,j

4= Z m nTH’ -1 Z Z x]tfytKh i ft,vmz,jft,mz,j - ft,vxz,jft,mz,j)

t=1 j=1 ft,xz,jft,vxz,j
% (ft,vzz,j - ft,v:cz,j)
ft,vzz,j

= Bp3z1+ Bpsa + Bnz 3+ Bp3a.

1Tn,j 15n (Z'L)

Then E[B,3:] = 0. We have

n

T
Bn31 - _Zm nTH/ 1zzx]t€]tKh’ z,J% Tn,Jlan(zz)-
i=1

t=1 j=1

Moreover, we can decompose B3 into two terms

Bnsi1 = Bpzi1 + Brsi2,

where

n T

Busin = (WTH)™> N my ' wulaKw(0)1,, 1., (2:),

i=1 t=1
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and

Bn3,1,2 - 2TH ZZZm J"jté-_]tKh’ z,Jt Tn,j an(zz)

i=1 j#i t=1

It is easy to see that F[B,311] = 0 and E[||Busiall?] = (n*H?)7'O(n) =

O((n*H"™)~Y). Hence, Bz = O,((n32H")™).

Also, By312 can be written as a second order U-statistic.

Bn3,1,2 =n n — 1 ;;Hm g =N 9 ———Uns,

where H,,3,; = (T'H')~ Zle(mi_lxjtfjtlm,jlgn(zi)—f—mj_lxit&tl%ilen(zj))Kh/,ij. Since

U,3 has zero mean, its H-decomposition is given by
Unz = Unz1 + Uns 2,

_ 2 n _ 2 n n .
where Un3,1 = Zizl Hn3,i7 Un3,2 = amn-1) Zizl Ej>i [HnB,ij - Hn3,i - Hn3,j]7 HnS,i =
E[Hn3,2j|wz]7 a‘nd w; = (Uia Ly Oy 2y u’L) = (vila e Uiy Tty - -5 TGy Oy 24y Uy - - 7uiT)'

Then, we have

T
1 _ _
Unsa = == > > Bm; eyl ile, (5) + my Tl iz, () K]

i=1 t=1

n

T
1 _
= OTH >N Emy Kile, (z) wilzabil-, i,

i=1 t=1
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n T
- nLT Z Z m; ! fa(z)wuin L, + Op(|W]7F /). (B.6)

=1 t=1

Also, we have E[||Upn22||?] = (n*H?)"'n20(H') = O((n*H’)™'). Hence, U,25 =
Op((nH"/?)71).

Then we consider B,32, Byss, and Bys4. Similar as (B.4) and (B.5), we have

that
Bugs = —ZZm (Bl 5], + Op (02 H'H) ™+ ||R) (')
i=1 t=1
) B+ (0¥ )R] )
= 0 ((n2H'ﬁ>—1+||iL||”<nH'>—1 (nE) ™ R+ (022 ),
Bn3,3 = sz fz Zi mZtE[§Zt|,UZ7x'Ltuzz]1Tnl+O (( 2Hl )

1—1 t=1
HIAI (nH) T+ (nH) T A 0T+ (n3/2H’1/2H1/2)‘1||hI|)

n T
1 _ . *
= — 7 SO mi Gz Elyglon i, 21) — Elyg e, )15,
i=1 t=1

+0p((n2H'H)_1 + IR (H) T+ (nH) ™+ |[A])” + 07

+(n3/2H’1/2H1/2)_1HhH),
since B[]z, 2] = 0.

Similar as the derivation of B4, we have Busa = O,(||h]|* + (Inn)(nH) ' +

IR |RI” + (Inn)n~tH-YV2H-1/2).
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Moreover, by Cauchy-Schwarz inequality, we have that

n T
Bl S0 3 mi foe)wi) 0~ 1,0

i=1 t=1

< A{E(lm; " fo(z)@alal )P (01, 21, 2) € Quaz) 2.

P((vig, Tit, z;) € Quaz) 18 the probability that (v, 24, 2;) is within a distance 7,, of the
boundary 0S8, of S,... Since the joint density function f,..(vit, T, 2;) of (vig, Tit, 2;)
is bounded and the volume of the set that is within a distance 7, of dS,,. is pro-
portional to 7,, we have that P((vy, 2w, 2) € Que.) = O(7,). Hence, we have
Var(o0: 200, S () Tkl i) = Var(ot5 200, S my foz)maba) +
o(1).

Therefore, we have that

\/E(BLC _/6) = %;g('z@) Tzzm 1fz Zz xztﬁzt Tn,i

i=1 t=1

n T
1 _ . ¥
7 SO mi Gz (Blyglvn i, 21) — Elyglwa, 21])15,

=1 t=1
+0,(5,)
< N(0, Vi)

by the Lindeberg central limit theorem, where

T
Vie = Var(g(z))+T" 2Var<z (m; t fo (2wl
=1
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o fo () (Bl 2, 5] = Blyilea, 21))

G = ValW(” + Vr(HY?) TR+ VanT R
/(2 HY2HY2) B[R] + a2 HY2HY) || )
+v/n(inn)(nH) ™+ ol k(R + Va(on)n  H2 Y
V(' H)™ A+ /a||hl|"(nH) ™+ /(e H) ™+ Vol + /oo™
v/ PHYEHY) B+ Ve HH) ™+ allR))(nH) 7+ i)™
+v/nllhl” + @2 HY2HY2) TR+ Vol B VA e HY )

+\/ﬁ77n = 017(1)7

and

Vit = VO, (W1 + () ) ) 0,1 + (') %) = 0,(1).

Lemma B.1.2. Define A1 (2) = = > S s} K 2o, andm(z) = T ST

Elzjsx) |z = 2|f.(2), where Ky .. =[]\ k (Zﬂh_lzl), then under Assumptions B4-

B,

Anl(z)_l — m(z)_1+0p (Hh’||"-|—(lnn)l/Q(nH')_l/z),
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.....

0S.}, 0S8, is the boundary of the compact set S,, €, — 0 and ||h'||/e,, — 0.

Proof: First, we have
E[An(2)] = m(z) + O(|M]]") (B.7)

uniformly in z € Q,. Following similar arguments used in Masry (1996) when deriving

uniform convergence rates for nonparametric kernel estimators, we know that

Inn)l/?2
Aun(e) = Bl = 0, (i) (B5)
uniformly in z € Q.. Combining (B.7) and (B.8) we obtain

Ay (2) = m(z) = Oy (IIXI]” + () /? (') ~2). (B.9)

uniformly in z € €2,.

Using (B.9) we obtain

A (2)™0 = [m(2) + Api(2) —m(2)]

= m(z)" + O, (II]]” + (nn)/(nH')1/2)

which completes the proof of Lemma B.1.2.
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APPENDIX C

Similar as Theorem 2.1 in Khan and Lewbel (2007), we can prove the following

useful lemmas.

Lemma C.1.3. Let h(vy, i, i, €i) be any function. If

Fe* (Git|Uit, Lit, Zz) = Fe*(eit|xit7 Zz’):

and the support of the random variable vy is the interval [L, K], then

E* |:h(vit7 Lity Zis Eit)
ft*(vit|$it, Zi)

K
*
xitazz’:| =F {/ h(Uz't,xit,Zi,Eit)dUit
L

xtz} . (C.1)

Proof of Lemma C.1.3: It is easy to see that

E* |:h'(vit7 Lity iy E’it)

_ * £ [h’(vita Lity Zis 6it)|vit; Lit, Zi]
2| = B -
ft (Uz‘t’f/ﬂita Z’i)
/K E*[h(vit, Tity Ziy 6it)|1)z't= Tit, Zz]
L ft* (Uit|xit; Zi)

Tt Zz}

f:(vit|xit7 Zi)dvit

ft*(vit\xit, Zz‘)

K

= / E” [h(Uz‘u Tty Zi €it)|vita Tit, zi]dvit
L

K
= / / h(vie, Tit, ziy €)AET (€itlvie, Tir, i) dvig
= / / Vit Tity Ziy Ezt)dF (Ezt|x7,t, 21)d'l)1t
= |:/ h(vzty Tty Ziy Ezt)dvzt

L

Tty 22:| )
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which completes the proof.

Lemma C.1.4. Let Assumptions D1 to D4 hold. Let H(y},, T, zi, €:) be any function

that is differentiable in y},. Let k be any constant that satisfies 0 < k < k. Then

. {8[{(%,%“ 2, €1) 1(0 <y < k)
E * *
ayit Ii (/Uit‘xitv Zi)
E* |:H(k:7 Lity Zi, eit) - H(07 Lity Zi5 eit)
ol

Lit, Zz:|

Tit, z} . (C.2)

Proof of Lemma C.1.4: By (C.1), we have that

P {3H (Vs Tty 2its €) 1(0 < iy, < k)

Y3y It (it 2;)

- |:/K OH [y} (Vit, Tit, 23, €it), Tit, Zis €]
L Y5 (Vit, Tit, 23, €it)

Lit, Zz:|

1(0 S y;t(vib Tty Zi Eit) S k)d'l}it

Tt Zi:|

w [ pEv+al0(zi)+eir OH (yfy,aie 7€) * *
K [ Ly+a],0(2;)+ei tay;; 10 <y, < k)dyi/

xz] if > 0,

w | pLtal0(zi)tei OH(y, i,z €i0) « "
—E [ Kytal0(zi)+ei %Tl(o S S k)dyit/7

Tit, zz] if v < 0.

By Assumptions D1 and D3 and 0 < k& < k, we obtain that

N {@H(yz‘;,wit, 2 €i) 10 <y < k)
E - -
3y fi (il zie, i)

k
aH(y* ity 24 eit)
= B / = dyy /Iy
[ 0 oYy /Il

Lit, Zz:|

Tit, Zz] ; (C.3)

which completes the proof.
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Proof of Theorem 4.1.1: Since for any function h(yi, zi, Vi, 2, €it)

E*[h(y;tvxitvvita Ziy Elt)]-(o S y:t S k)|ZZ]

Eh(Yit; Tit, vit, 2, €0) 1(0 < iy < k)|2i] = P*(yz, > 0|2) ’
it = V1<

we have that

* k
E[1(0 < yir < k)/ S (vie] wir, 20)| 2] = PG, = 02 (C.4)
i = Ulzi

by (C.3). Also, we have

15 |:xit(yit —0iY0)1(0 <y < k)
ft* (Uz‘t|l‘it, Zi)

:

E*xu(yl, — viyo)1(0 < vy, < k)/ fi(vilwir, 2i)| 2]
P(y;; > 0]z)

B[z} B + €)1(0 < yjy < k)/ 17 (vielwir, 2i) | 2]
P*(y% > 0]z)

M= 10

o~
I

1

[M] =

o~
Il

1

B [E* [z} B + €n)1(0 < yjy < k)] f7 (il wae, i) wae, 23] | 23]
Py, > 0]z

] =

t=1

k(E* [xztsztIzl]@(Zz) + E*[ziyenlzi])
7P (i, = 0]z:)

]~

o
Il

1

Hence, by Assumption A4 and E*(€;|z, z;) = 0, we have that

> Blwigulz) = O B[z |2])0(z).

t=1
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Therefore, we get that

—1 T

0(z) = (Z E*[xita:iTt|zi]> > Elzigialz).

Proof of Theorem 4.1.2: Since v;1(0 < yi < k) = v 1yl — 2,8 — uy)1(0 <

y;; < k) and

E*h(yy, i, vit, %, €11) 1(0 <y, < k)]

E[h(yitvxitavit7 Zi ezt)]‘(o < Yit < k)] = P*(y > O) 7
it —

we have that

Elog1(0 <y < k)/f; (vielwie, 23)]

= E[’V_l(y;t ztﬁz Uzt) ( < y:t < k)/ft*(vit|wita Zz)]
E* v ys, — 2B — wi) 10 <y, < K)/f (el win, 23)]

P*(yzt > O)
_ [y~ yztl(o < i < R)/ (i, 23)]
a P*(yzt > 0)
E [y (@B — ua)1(0 < 5y < K)/ [ (va|wir, 2i)]
P*(ylt > O)

k2 RE* [z} 8 — ua) )
— — ! P*(gy; > 0).
<27|7| ] /PG 2 0)

Also, we have that

k

E[L(0 < yir <k)/ ] (Witlwr, z)] = Y| P*(y, > 0)°
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Therefore, we have that

(k) =

RN

T
1
t=1

Hence, we have that
k— K
V= TN
C(k) = C(K)

We give some shorthand notations first. These notations will be used throughout

the proof of Theorem 4.2.1. Define

K eje = Kw(z—2), Kwpji = Kw(z; — 2),
Ky oo = Kh/(z;f —2), Ky ji = Kh/(z;f —z7),
Froes = Fr @il 2), Fiojwes = £ Wil 2)s Fomey = I (Wit 0, 25),
froeny = ST, 25)s flowei = 1 Wits Tits 20)s Fivwa e = Fo (Vnts Tht, 21),
(Frowes) ™ = (0 2) 7 (Fruees) ™ = (FF (Wis i, )71,
(Froeer) " = et 20) ™ fraes = i @ie 20 Fraes = Fi (@0, 7)),
= 1., (e, Tjt, 25)5 Lrpi = Lo, (Vit, it 26)5 Loy = Loy (Vke, T, 21),

Tn,J

93‘ = G(Zj), t; = 9(%’); O = 9(Zk),

T
mi = m(z) =T Elwi)|z = 21f(2), mj=m(z), my=m(z),
s=1
K voorg = Kn(vp — v, Ty — Tjt, 25 — 25),
K;:,vmz,ki = Kh(UZt — Vit xltt — Tit, ZZ - Zi)’
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K;,vxz,ij = Kh(v:t — Ujt, x;'kt — Ljt, Z:( - Zj)a

K;;,vwz,jk = Kh(v;t — Ukt m;t — Tkt Z; - Zk)a

K;;,vmz,ik = Kh(v;t — Ukt, .’17;5 — Lkt Z;k - Zk)a

K;;,vwz,ji = Kh(v;t — Vit, x;t — Tit, Z; - Zi)a

K;;,vwz,mi - Kh(U:nt — Vit x:nt — Tit, Z;I - Zi)a K;i:’mz7mi = fq,(x:nt — Ty, z;kn - Zi)v
K vz = Kn(py — Vit Ty — i, 2 — 25), K o= K, — T, 20, — 25).

. Foo
Proof of Theorem 4.2.1: Since ft*v|m ;= %, where
’ ? t,xz,1

n*
r -1
f;vxz,i = (n*H) Z K;;,mcz,miﬂ
m=1

*

n
[k - * 1\ —1 *
ft,xz,i - (’I’l H) Z Kﬁ,xz,mi’
m=1
we have
fttv|xz,i - 1 * 1 1
Py - + ft,v|xz,i( P - f* )
ft,v|mz,i ft,v|mz,i tlwz,i
ft)’:mz,i - ft)’:mz,i ft*,v:tz,i - ftfvwz,i
ft,mz,i ft,vwz,i

+ (ft)tvmz,iftfxz,i - f;:vmz,iftfmz,i) (ft*:mcz,i - ft)tvxz,i)

fiaziltvazili
t,xz,nd tvrzid tvrz,s

(C.5)
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Then

1(0 S Yit > < k Z 0 < Yit > < k) ft (Uzt|l'ztazz)
~ Tn,z f

E>
=
I
S|
(7=

nyl
= S (il 2) (vit|ie, z:) ft (Vite| e, 21) i
_ l : 1(0§y1t<k Z O<yzt <k) ftvxzz ftfv:vz,il ]
" i=1 t* (U’it|xit7 zl f v1t|1"lt7 Z’L) ft,vzz,i ™
1 - 1(0 < Yit < k) ft,:cz,i - ft,:cz,i
+_ * ]-‘rn,i
ne= fi (il @i, i) fiwzi
_’_l zn: 1(0 S Yit > < k) (ft VT2 zft T2,0 ftfvxz,ifzccz,i)(fzvzz,i - ftﬂ:vxz,i) 1.,
~ Tnyi
n i=1 ft* (vitlxit’ Zl) ftfzz,iftfvwz,ifzvzz,i

par (k) + puaa (k) + pus(k) + pa (k).

Since ||A'||/7, — 0 and the kernel function K(-) has a compact support, the
trimming function 1, ; will ensure that all of the points which have boundary effects
are excluded from our estimated locations. By Lindeberg’s central limit theorem, we
have fu1(k) — E[1(0 < yir < &)/ 7 (vilwa, )] = Op(n™'/?).

We can see that uw(k) and pus3(k) can be written as a second-order U-statistics.
By similar argument as in proving (A.32) and (A.33) in Khan and Lewbel (2007),

we have that

n 1 " 1(0§yzt§k)ftvxzz
k) = —=Y E v = Uy, T = Ty, 24 = 2]
IU/tQ( ) n*n z:: [ ft*(vitlxit,zri) fi’:vwz’i Vit U'Lt Tt xzt Z, Z,L]
100 <yu < k) ~1/2
+ o0,(n ,
I (il @it 2;) 4ol )
n 1= 10 <wir <k) fram

(k) = —=>» El— —|ry =x,2 =2 — F
a(b) n*n & [ft (vit|it, 23) ft,a:z,i| v I= £l

+E[

10 <yu <k)

[ (il iz, 2;)
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For pu4(k), we have

E(||pza (k)]
(0 < Yit > < k;) (ftfvmz,ift)’:mz,i - ftfvxz,iftfzz,i)(ftfvmz,i - ftfvxz,i)
< | 1,
- P T,
ft (,UZt |x2t7 Zz) ft*mz,if;vxz,iftfvxz,i

IN

]-Tn,i

(H (O < Yit > < k || ' ft VT2 zft ,TZ,0 ftfvxz,iftfzz,i)(ftfvmz,i - ft)’:vxz,i)

ft (,Ult |x2t7 ZZ ftfmz,iftfvwz,i ftfvmz,i

) |

(C.6)

From Hansen (2008), we have

)t 7,2, 2) = fi(v,2,2)] = OBl + (nn®)2(n* H)~V/?),
U,ﬂ?,ZE VL Z
sup  |fr(@2) = fr(@,2)| = Op(IAlY + (Inn*) 2 (nH) /),

(.T,Z)EPQ;Z (vaz)

where P, () is the projection of Cartesian product. Hence, we have that g (k) =
O + () HY ™+ AR + () () H 2 2),

Thus, we have that fi;(k) — u: (k) = O,(n=Y2).

Since
11 fie(k) — pe(k) N (fu(k) = pe(k))? ©7)
fu(k) (k) 11 (k)? (k) e (R)2
we have that
T n

1 N 11 2’1)@1 0 < Yit = < k)
T ,U,t( - Tt
T tzzl: n ; f Uzt|xzt7 Zz)
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n

2%:1 0 <y < k)

i=1 ft vzt|xzt7 Zz)

-1

Tn, b

1
n

N[ =

Tn, 0

i=1 ft*(vitlx’ita Z’L)

,1 pe(k)%1 Z”: 20;:1(0 < gy < k)

T

ML

12T:/1 k)iZZUitl(OgyitSk)l
?

T

(k) ne frlodwa,z)
= G(k) + Gk )+C3( )
by (C.5), we have that
G (k)
1 ET:M (01 L " 2041(0 < yi < k)
E— t - = Tt
T t=1 Uy t*(vzt|$itazi)
! XT:# (k)_ll 2”: 20 1(0 < yir < k) f7 (vie| e, 2)
E— t - ~ Tn, 0
T =1 n-.—= fi (it @i, 2:) fi (il i, 2;)
T n
1 1 20,1(0 <y < K)
= =D (k)= Tnt
T ; n= i (Vit| it 2i)
T n r
1 _ 1 2Uzt1(0 S Yit S k) ft*va:zi - ft*vaczi
—+— o k 1= - : y % : : 17'n7i
th:; t( ) n i—1 ft (Uit|'ritazi) ftvxzi
T n R
1 _ 1 2Uzt1(0 S Yit S k) ft*mzi - ft*mzi
=3 k) wet iy
+T tzzllut( ) n ; fi itlie, 24) Flaz "
+ 1 ET:N (k)_l 1 - 2U1t1(0 S Yit S k) (ftfv:vz,iftfzz,i - ftfvxz,iftfxz,i)
sl t - * * *
T =1 n i=1 ft (Uit|wit? Zi) ft,mz,ift,vxz,i
« (ft*vxzz ftfv:vz,i) 1. .
ft,vzz,i "

= Galk) + Gak) + Gs(k) + Galk).
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By Lindeberg’s central limit theorem and the same argument for the trimming

function as in the previous proof, we have (i 1(k) — TS0 (k) ' E[20,1(0 <
Yie < k) [ (il )] = Op(n™'72).

For (3 2(k), we have that

T n A*
<.1’2(1{;) _ i -1- 1 Z 2Uzt]- O < Yit < k) ft VT2, ft,vxz,i 1Tn7i
T —1 n ft Ult"xlt? zl) ft VTZ,E
— _1 i 11 i 2vzt1 O < Yit > < k) ( )_1 Z?:l K;:,vwz,ji - ftfvxz,i
T =1 n i=1 f Ult|xlt7zl) ftfv:vz,i
X 1Tn i
T n nx
_ _ QUitl(O <y < k)
(TL n ) tzzl g :u’t( ) ft*(vit|xit7 Zz) ( hvrz,ji ft,’uxz,z)

(12(k) can be written as a second-order U-statistics. By the similar argument as in

proving (A.32) and (A.33) in Khan and Lewbel (2007), we have that

(k)

2’1)110<z<k VTZ,0 * * *
- ISt (RO S S ez

ft (vlt |x1t7 zl) ft,vmz,i

1) +o(n17%).

2Uit1(0 S yir < k)

ft* (Uz‘t|l’it, Zz)

_E[
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Similarly, we have that

sztl(o < Yit > < k) ft Tz,
_ N7 ( =tz =
Cl?’ Z Z'ut ft (,Uzt|wztazz) ft’mzyi|xzt Lty Zi Zz]

2,-1 <y <k _
Vit (O—yt )])‘l-Op(n 1/2)‘

ft*(vit|xit> Zi)

_E[

For (3 4(k), we have

E([ICa(®))
< E <||N(k)_1 27]1’751-(0 < Yt < k) (f:,vxz,iftﬂ:xz,i B ftfv:vz,zfi‘:lez)(fwgtvxz,z B vaxz,i) 1Tn,iH>
ft ('Uit|-7;it7 zi) f;wz,iftfva:z,iftfvxz,i
< E (HM(k)_l 2041(0 < yu < k) || (vaxz,ifg:xz,i - f;:vmz,iftflei)(ftfvmz,i - ft*,vxz,i) 1. ) .
ft* ('Uit‘l"it, ZZ) ftfxz,if;vxz,iftﬂ:vxz,i 7

Similar as (C.6), we have that ¢;4(k) = O,(||h|[* + (Inn*)(n*H)~' + ||h||"||R]]” +
(In n*)(n*)_IH_lﬂﬁ_l/z).

For (,(k), we have

G = L i k) = (k) 1 G~ 2010 <y < k),
T —1 :U't(k)z n= t*(vzt|$itazz) "
1 zT: (k) = pra(k) 1 Z 2041(0 < ya < k)

T~  wk)? n< ffolvwz)

_liﬂt(k) _Nt(k)liQ'Uztl(O < Yit > < k) ftmzz ftfzz,il .
r t=1 11 (k)? ni3 fi (it wir, 2) I 2,0 "

_lzT:ﬂt(k) —Mt(k)lzn:2 t]-(o <yzt < k) ftva:zz ftfvzz,il
T t=1 Iu“t(k)2 n i—1 (Uzt’xlta z’L) ft,vxz,i "

_l i fue (k) — pe(K) l - 203 1(0 < yy < k) (ftfvxz,if:wm B fzvxz,iftfwz,i)
T =1 ,ut(k)2 n i1 ft*(vzt|xltazl) ftfzz,iftﬂ:vxz,i
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v (ftfva:z,i - ftfvzz,i)
f tfvzz,i

Go,1(k) + Goa(k) + Cos(k) + Cou(k).

1Tn,i

Hence, we have

G2 (k)
T n
1 /lt 1 2vzt1 O < Yit > < k’)
= T mr 17‘n,i
T ; n ; ft Uztlxzh Zz)
T
1 fir(k) — pu(k)
= N B R B0 10 < ya < )/ (vl 2
T2 Mk) (20010 < g < B)/f7 (vl )]
1 zT: fu(k) — — 20 1(0 < yy < k) o E[Qvitl(o < Yie < k)]
T~ u(k J il w, z) " fi (itliz, 2i)
T
1 fu(k) — (k)
= —= —— 5 E[2v;1 <y <k il Tit, 2
T2 e P20 S e S R F (el 2]+ O
T
1 k) — p (k) + k) + k §
= _fzut’l( ) = k) M;,z( )t )E[2Uit1(0§yit < k)/ i (itlwie, 2i)]
—1 1 (k)
+0,(n™ ")

Also, we have (2(k) = Op(n™"), and (o3(k) = O,(n™"). Since sup,<,<p [|fu(k) —
(k)| = O,(n=2), similar as (C.6) we have (o4(k) = 0,(n"1/2). It is easy to see
that (3(k) = 0,(n=%/2).

Hence, we have ((k) — ((k) = O,(n~'/2).
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Next, we have that

. k—k
T dm i)
LRk =) — (R — (k)
(k) = () (k) = C(R))?
NGOEGEIGORIICD)
+(k—K)

(€0 — SR C) — C(R)?
LR = E) — (k) — ()
N I

(k) — (k) — (C(R) — <R
(k) — CRCR) — C(R)?

+(k — k’)(

by Theorem 4.1.2. Hence, by Lindeberg’s central limit theorem we obtain that

V(¥ —7)
SR = C) — (R — )
) ﬂkg e ey oW
= Vi l(Ga(K) = CF) + Guak) + Cualk) + G (k)

—(Ga(k) = (k) + Gia(k) + Cra(k) + Ca(k))] + 0p(1)

— N(0,V3),

where V., = E[yy(k)?],

— (k) (k) Pme (k) + pe(K) " pu(K')
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2041(0 <y < k)
k) = — ny(k
SDt( ) ft*(vit|$it; Zi) 77t( )
—cE[zviti(O <y < k) fi;vxz,i
ft ('Uit|l'it, Zi) ft,vmz,i
2Uit1(0 <y < k?) ft,xz,i
[ idlwin, z)  fips
1(0 < Yit < k)
k) = — (K
¢t( ) Iz (Uz‘t|$it, Zi) Mt( )
100 <y, < .
—CE[ (9 = yzt = k) ft;vmz,z
ft (,Uit’xit? ZZ) ft,vz’z,i
]-(O S Yit S k) ft,mz,i
ft* (/Uit‘x’it? Z’i) ftﬂ:mz,i

ne(k) = E20:1(0 < yi < k)/f; (vit|wie, 23)]-

* * *
|U’it = Uty Lit = Ly &4 = Zz]

+cE|

| = @5, 2 = 2],

* * *
Vit = Uy, Tir = T3y, 2 = 2]

+cE|

i = @, 2 = 2],

This completes the proof of the first part of Theorem 4.2.1.

Next, we prove the second part of Theorem 4.2.1.

For z € Q2,, let

n* T
An(z) = ('TH')™! Zxjt(xjt)TKZf,z,jzlm,j1en(Z),
j=1 t=1
“ =010 <y < EVKp o, s
Ap(z) = <nTHI>—1zz<xﬁ<yﬂ 2 VMO =y = B Koo >1Tn,j1€n(z>.
t=1 j=1 Mt(k’zj)ft,vwz,j

Recall that

(e — viy) 10 S e < RS (il e 25)

Y - *
! E[1(0 < yj < k)/fi (vje|je, z)|2)]
_ (i = )10 < g < B)/ S (Wil ies 7))
/vbt(k7zj)
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Using (C.5) and an equality similar as (C.7), we have that

A

eLc(Z)

= Anl (Z)_lAnQ(Z)

I n P* J ]
(y it > OlZJ) tlxz,j

= 0( ) (An ( ) ( I) 0 j 2 |
2) + 1(Z n’l ‘H Zt Z J jt 1 y it — > Olmﬁ" J) Jt,v|ccz,j

Kh’,z,jz]-rn j]-sn (Z) - 9(’2))

fvacz
+An1( nTH/ szﬁ y]t yjt|xjtaz]))Kh'ZJZAt l J]'Tnj]'i-?n(z)

t=1 j=1 tv|a:z3
k k, z; vlzz
_Anl( nTH sz]tgjtlu,t ZJ k Mt( ,ZJ)Kh/’z,]zfAt | J 1Tn]15n(2)
t=1 j=1 pu ZJ) tvlwz,a
v;1(0 <y < k)Y — )
_Anl( ’I’LTH it / .
;]21 ’ lut k: Zj)ftv|xZJ
f wlzz,
XKh’z_yz At | J]-Tnj]-sn(z)
tv|wzj
~ e(k, 25) = pu(k, 2;))?
+ A (2)  (nTH')™! xgj- Pl %) — P %
()7 2 2 T Stk )
f wlTz,
XKh’zyz At | J]-Tnj]'En(Z)
tv|xz,j
T n ~ ~
F A () (nTH) TS x'tvjtl(o < yie < K)(Y = )k, z5) — pu(k, z5))
=1 j—1 ! lu’t(k7zj)2ft>tv|mz,j
f*v Tz,
XKh’,z,jz At;| J Tn,J]-En(Z)
ftv|xz,j
T n ~ ~
—Api(2) (nTH) Y Zx.tvﬁl(o < it <R = )k, 25) — pu(k, 25))?
=1 =1 ! /lt(k7zj):ut(k’ Zj)th*:U|$Z,j
f*v Tz,]
XKh’zgz At; o] ]-Tn]]'En(Z)
ftv|zzj
= 9(2)+An3( )+An1( ) 1An4( )+An1( ) 1An5( )+An1( ) lAnﬁ( )+An7( )
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By Lemma C.1.5 we have uniformly in z € €,
Au(2)" = m(2) 7+ O, (IIN])Y + (Inn®) 2 (" H') 7 2)

where m(z) = T7! Zle E*[xjsx;‘rs|zj = 2]f1(2).

Let m; = m(z}). Then, we have that

Bre = =3 Ore(2)

= B+ ni > gz + ni D Au(z) + ni ; i [Ana(2) + Aus(2])

i=1 i=1

+ Ans(2) + Aur(z)] + — D7 Aus(2) + s

where 13, = Oy, (|I||” + (Inn*)2(n*H')71/2) Op([| Ana (27|41 Ans () |+ Ans (27) 1+

[Anz(2)1])-

. 2 I vans
* _ Jtvzxz,j
Since ftﬂ)'m’ P where

* n*

n
£ -1 £ r7\—1
ftfvacz,j = (’I’L*H) Z Kz,vmz,mj and ftfacz,j = (n*H) Z Kﬁ*,wz,mj’
m=1 m=1
we have
ftfv|acz,j 1 1

)

= 1+ ftfv|mz,j(

F F T s
ft*:v|a:z,j ftfv|xz,j ft,v|xz,j
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ft JL2,] ftjkzz,j ftq:va:z,j - ftfvxz,j + (ftfvzz,jftfxz,j - ftfv:vz,jftfxz,j)

+
ft 22,7 ftﬂ:vmzyj f;:m’j fzvzz’j
% (ft*:vng ft vftz]) (C 8)
ft VX2, ]

Then, we have that

1
Bnl = AnS( )
n i=1

n* T
1 =1 P*(yﬁ, > O|ZJ) nN—1
- Ez;mi T ;( Z%t% Py, > lejt,zj)(H) K 2 jils, i
1= =

_(n*)_l Z x;t(x;t)Tei(Hl)_lKh’,Z*Jil:n,j) 1., (%)
j=1

T n

> 0|z)
1 N1 T ygt J
+n* g m; (nTH') g E Tjt Jtejp* y > 0l ZJ)Kh’,z,ji
t=1 j=1 ’

ftmzy ftzzjl
ftng

+1 . m; (nTH') IZT:zn:x zl Py, 2 0lz) Ky, i
Jt gt ]P* y > 0|x]tyz]) h',z,ji

i=1 t=1 j=1

Tn,J 1571 (Z:)

* *
% ft,vxz,j - ft,v:vz,j ]-Tn,j ]-an (Z*)

K3

ftvzzj
T n

Z 7)Y Pryj = 0lz)
T Nt Jt J ! 2.91
+ ’ITL TL xjtx]t JP* * > 0|xjt’ Z]) h,z,j

t=1 j=1

% (ft,vxz,jft,:cz,j - ft,va:z,jft,xz,j) (f;:vxz,j - ftﬂ:vfcz,j)

fl::l‘z,] ft)tvxz,j ftfvxz,j

Op (([[HII” + (nn*)2(n* H')712)?)

]'Tnyj]'en (Z;k)

Bpi1+ Buig + Bpiz + Bpia.
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First we consider B,;,,. We have

n* T *
B o 1 _1T_1 —1 P y]t > 0|Z.7) Hl _1K 1
i1 = Ezmi > Z%t% Py (H')" K zils, 5
i=1 t=1

> 0’%57 ZJ)

Y ) O H) T Ko ﬂl;g> L, (=),
j=1

Further, B, ; can be written as a second order U-statistic.

*_n*(n*—l n*(n*—1)
Bnl,l == (nn ) ! 2 ZZHnl ij = nn ) ! 2 Un17
i=1 j#i
where
H.,.,;, = (TH 1im T, Py, = 012)) 1(i < n) K. jils, 1., (2))
nl,ij f Jtlgt jP*(yt > le]t,zj) = Wz jidr,,j e, \ %4

n —1,_ %

_ P*(y}, > 0]z)
* \ T * * 1 T it — 1

) 0 Ky e 1 )+ ms a6,

— l' ( ]t) R z* git g 5n(zz) j Lit Ly P*(y:t > O|xit72i)

x1(j < n)Kp 2 jils, i1, (25) — —m; ' af(x)) "0, Ky o jidE 10, (2)).

Tl

Since €, > 7, and ||| /(e,—7n) — 0 and the kernel function K( - ) has a compact
support, the trimming functions 1, ; and 1., (2;) will ensure that all of the points

which have boundary effects are excluded from our estimated locations. We have

ElH,1 5] = Ou(IV]").
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Also, we have

T
1 n
E - Hn i_ n A Hn T nl,
(z[ e )( St 1>1>
Var |2 S (Huyi - E(H)
- | — nli — nl,i
! n i=1 i i
= O~ W), (C.9)
where Hnl,i = E[Hnl,iﬂwi], w; = ((ﬂ;g, Ce ,iCi—I;w, Zi);

E ( Z[ nli T (HZM)])< Z[ nli T (HZU)]> = O((n") HIW'[I*).

where H;:l,i = E[Hnl,ij|w;<]7 w;k = ((le)—ra RN (er)T Zﬁk)7 and

a2

Var — 1 Z Z nlyij — nl i Hnlj H;:l i H;lg + E(Hnl,ij)]
=1 J>z
- _ 2 Z Z Var [Hnl Ky nl K Hnl,j + E(Hnl,ij)]
=1 5>t
= 0((n*)_2H’_1IIh'II )- (C.10)

Thus, Buiy = Op([W[|” + (n* H'2)~H|[W])).

Let

B,y = Bpia+ Bnig+ Buia.
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Hence,

P*(y 2 Of) Fiivng = flvess
Bpe = — m_1 nTH')™ T 0 Jt — ~ K2 ji VTZ,] UTZ,J

X]'Tn7j1 (Z*)

)

* * £

1 N1 (yjt 2 0|Zj) ft,mz,j - ft,mz,j

- > m; (nTH') 12 ),0; Ky eji—
Z ;; TPy > 0zt 25) Jiwzg

Lrnslen ()

7

P*(yj, > 0[2;)
— (nTH')™! N K i
+ Zm n ;lexjtxjt JP* * > 0|x]t,Z]) k' ,z,ji

% (ft,vzz,jft,mz,j - vazz,jft,mz,j) (ftfvmz,j - vazz,j)

fZCEZ,j ft*,wz,j f;:vxz,j

17'n7j 1571, (z’;k)

B2 + Br22 + Bpa3.

First, we consider B, ;. We have

n*

T n
1 _ P (y5, > 0]z)
Bn2,1 = - m; ! nTH’ 12 ‘Tjtxjt JP* J> O| ) W ,z,ji
n i=1 t=1 j=1 y Lits %
£ _rx )
% ft,’U.’EZ,] ft,vmz,] 17—n7j15n (ZZ*)

ft,vwz,j

]_ " -1 Nn—1 T - y]t O|Z.7)
= — m nTH szjt ]t ]P* Kh/’z,ji

o t=1 j=1 (Y5 = Olje, 25)

nH) Y K | '
y ( ) Zk—}* h,vzz,kj ft,vxZ,] 17_”’].]_6" (Zz*)
t vwz,j

Pr(yj, = 0lz)

T
= ( ( QTHI ZZ;ZWL xjtxgt ]P*(y* > 0|xjt,zJ)Kh’,z,ji

i=1 j=1 t=1
X (K;; vrz,kj Hft*vxz,j) (ft*vxz,')_llTn,jlfn(z;k)

ZZ P*(y;, > 0]z)
= TH/ i TQ 2 ’ K, /2,11
( ( m mtmlt ]P*( * > 0|l,jt,zj) h',z,

i=1 t=1

X (KZ(O) - Hftﬂ:vmz,i) (fZsz,i)_llTn,j 1€n (Z;k)
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P*(y%, > 0]z;
o PTE T S S Y mtaal by E 0D,

i=1 ki t=1 (yjt > 0z, z5)
X (K;: vezki Hft*vxz z) (ft*vzmi)illrnjl (Zz*)

P* (3 > 0l2)
2 / jt J 3
+( ( TH'H Zzzm SEth]t JP*(y > O|$Jt,zj)Kh/’Z7jz

i=1 j#i t=1

X (K;;(O) - Hft*vzzj) (f:Uzzj)_l]‘Tn j]‘ (Z:)

P*(y5, > 0[2)
2 / gt ¥ B
+( ( THH Zzzm xﬂtxjt JP*( x> O’x]t,ZJ)Kh’,Z,ﬂ

i=1 j#i t=1
X (K;; vrz,ij Hft*vzz,j) (ft*v:vzj)_llTn»len (Z*)

P (g5, = 0]z)
/ J ]
+(n(n")*TH'H ZZZZm xﬂtxat Jp*( ¥ >0|xjt,zJ)Kh"z’ji

i#j#k t=1
X (K;:,vxz,kj - Hvamz,j) (ftfvxz,j)illTn,j 1€n (Z;k)

= B+ Buojio+ Broig+ Bpoia + Brojs.

It is easy to see that Bg11 = O,((n*)?H'H)™"), Bnai12, Bn213 and B4 can
be written as second order U-statistics, and By 15 can be written a third order

U-statistic. Also, by the Hoeffding decomposition, we have that
Busio = Op([[R[I"(n*H') ™), Bugs = Op((n"H) ™), andBug 14 = Op(||A]]"(n) 7).

By the theory of two sample U-statistics, we have that

n* T

L= P*(y5, > 0]1)
= =) 1 Tl = P (2)) — B[P (g5, > 0]2)0;
Py ; (m ztxlt P*( Z Oyl'ztazz)fz (zz) [ (yzt — |Z) ]

Op(IRI1" + ()" + (n*2H"2HY2) 1)
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Hence, we have that

Bn2,1

n* T
! - - P*(y;; > 0]2)
= — Tl ‘1 i Tez 1t ) (K _E*P* *> 101
n* ; Z (mz T txzt P*(y;kt 2 0|xit’ Z,L) fz (Zl) [ (yzt > O|Z ) ]

t=1

+0, (2 H'H) ™+ [l (nH') ™ + (nH) ™ + B} 4+ 0!

T H )7 ) (C11)

Similarly, we can show that

n* T
IR ] Py, 2 02
= —— 7! <m-1x¢x~T0i = (25 — E*[P*(yl, > 0]2;)0;
— ; 7 tLigt P*(yz*t Z O|xitpzi)fZ( z) [ (yzt - I ) ]

+O,((*H'H) ™ + |B))* (nH") ™" + (nH) ™ + [|B])” + 07"

+(n3/2H'1/2.ﬁ11/2)_1||l~7,||). (0‘12)

Similar as the derivation of Bp14, we have Byos = O,(||h||* + (Inn)(nH)™ +
IR IRl + (Inn)n~tH-Y2E-1/2).
Denote

it = i — E(Gjelwje, 25).-

By (C.8), we have
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f*v xz,] *
= _Zm_l (nTH')” szﬁ Uit — E(Gjel e, 7)) K i At* [22d 1.1, (%)

t=1 ] 1 t,'v|mz,j
n T
_ (nTH)™? K
S T Y S i)
n i=1 t=1 j=1
froey = 17
t7 7‘ t7 7‘
—|— Zm nTH/ sz]té.]tKh z,]leTn,jlsn(zgk)
t=1 j=1 ft,xz,j
Sroseg = I
— t7 7. t? ’.
RS DL IRb I I RS
t=1 j=1 ft,vwz,j
n * £x £x *
+ i* Z m; (nTH')™ Z D ik i (ft’m’jft’ﬁz’j _*ft’m’jft’m’j)
n im1 =1 j—1 ft,mz,jft,vmz,j
(fiowey = fivasy)
x ,vmz,z VT2, ] 17-n,j15n(z:)

ftfvmz,j

Bs1 + Bz + Bpss + Bpsa.

Then E[B,31] = 0. We have

n

T
Busi = — Z m; ' (nTH')™ Z Z T K 2, jils, j1e, (2]).

i=1 t=1 j=1

Moreover, we can decompose B3, into two terms

Bus1 = Bpsi1 + Busi,

where

n* T

Bn3,1,1 = (nn*TH -1 Z Z m xzt&thh’ zu Tnyi ]-en (Z*)

=1 t=1
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Bn3,1,2 = nn*TH' Zzzm x]tfgtKh’ 2,J% Tn,] sn( )

i=1 j#i t=1

It is easy to see that F[B,311] = 0 and E[||Bus11l!] = (n?(n*)*H™*)~'O(n*) =
O(((n*)3H’2)—1). Hence, Bn3,1,1 = Op(((n*)3/2H’)_1).

Also, B,312 can be written as a second order U-statistic.

*_n*(n*—l n*(n* —1)
Bn3,1,2 = (nn ) ! 9 Zl: ;Hwﬁ 4§ = nn -1 9 Un37
i j#i

where

T
Hysiy = (TH)™Y (my wpbuls, j1e, (20) K iy 107 < n) +mj ' wabals, i, (2))

t=1
XKh’,j’il 1 S n))

Then, by using two sample U-statistics, we have

Uy = *T Zm‘lfz Vi, s + Op(I1|7F1/v/ne + (0" H"/2) 7).

i=1 t=1

(C.13)

Then we consider B39, Bpss, and By 4. Similar as (C.11) and (C.12), we have

that

n* T

n32 -

*T m_lf xltE[£1t|xlt zt? R = Z’ﬂlTn,i
1

=1 t=
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+O,(n*H'H) ™ 4 ||R])" ()™ + (nH) ™+ [|R]]” + (n®2H2HY2) 7 |R]))

= Op((n*H'H)™ + |h|l" (nH') ™ + (nH) ™" + ||+ (n*2H2H2) 7 A)),

and

Buys = *T Z Zm_lf Dz ElSalvi = vf i = x5, 2 = 21,
i=1 t=1

+Op((n2H’H)_1 + R]Y () + (nH) ™+ B 40

+(n3/2H’1/2H1/2)"1||h||)

= n*T Z Z (Efalvi = ], 2 = 23, 2 = 2]]

i=1 t=1

—Efit| v = 2}y, 20 = 27]) 10, + Op((nQH'H)_l + ||B||¥ (nH")

() B+ 7+ (0¥ HYHY2) ],

since E[&|zq, 2] = 0.
Similar as the derivation of B4, we have B,ss = O,(||h]|* + (Inn)(nH)™* +
RPN + (nn)n=t HZ2HY2).

Moreover, by Cauchy-Schwarz inequality, we have that

n T

EHniT Z Z(mi_lfz(zi)ﬂcit&t)m(l -1,

|
i=1 t=1

< {E(|m; ' fo(z)wakal ) P((vi 4, 2:) € Qva:z)}l/2-
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P((vi, Tit, 2;) € Quaz) 18 the probability that (vy, 24, 2;) is within a distance 7,, of the
boundary S, of S,... Since the joint density function f,..(vi, T, 2;) of (vig, Tit, 2;)
is bounded and the volume of the set that is within a distance 7, of dS,,. is pro-
portional to 7,, we have that P((vit, Ti,2i) € Q) = O(7,). Hence, we have
Var( s Sy Sy my  fo(z)mubiln,) = Var(gbs S, S my ' fo(z)zuba) +
o(1).

Further, we have

(nH')™! > 10 <y, < k)Kh’,ji/f:(vjt|xjta z;)
(nHl)_l Z;L 1 Kh’ N
(nHI)_l Z L 10 < yje < B) K i 1 (jel e, 25) fi(vielxje, 25)

/lt(ka Zi) =

(nH")7 325 K i fiWitlae, ;)
= ()Y a1 MO g = B e
= Jiielaje, 25)

’I’LH/ -1 i f 0 < Yjt > < k)Kh’gz ft VTZ,j ftfvmz,j
f (v]t|x]t’2]) ft ,UTZ,]

nHl -1 zn:f Z 0 < Yit > < k)Kh’,]z ft(L'Z] ftfa:z,j
It (v]t|x]t72]) ftzz,j

nH/ ! zn: f(z 1(0 < Yit < k)Kh'ﬂ (ft ”wzvﬂft T2,j ftfvxz,jftfxz,j)
ft (th|1"jt; ZJ) ft,zz,jfzvzz,j

» (ft,mcz,z' - ft,vmz,j) + Op(n1/2)

ftﬂjvmz,j

= un(k, z) + ek, z) + ws(k, z:) + pa(k, ;).

www.manharaa.com



115
We can see that pp(k, z;) and us(k, z;) can be written as a second-order U-

statistics. By similar argument as in proving (A.32) and (A.33) in Khan and Lewbel

(2007), we have that

n 1 = 1(O<yit<k) ftvzzi
:U’t2( ) Zl) n*n ;zl: [ ft* (Uit|xit> Zz) f::vmz,i |Ult Usgyr Lit Tips %4 2 ]

1(0 <y < k)
[ (i Tt 2i)
ﬁl iE[l(O S Yit S k) ft,;cz,il
ntn fi(itlwie, ) fipai

10 <yu < k) ~1/2
[ fi (i Tt 2i) 2] + o )

+E| 2] + 0p(n~1/?),

* *
Ty = Ty, 2i = 24|

Nt3(k7 Zz) =

Further, we have that p(k,z) = O,(|hI* + (Inn*)(n*H)™" + |h||”||R]]" +

(In n*)(n*)_lH_l/zﬁ_1/2).

We have
1 n* T n /J k 2) — (k Z‘)
Bn4 = __*Zmz_l(nTH/)_lszjtg]t ! ] k: ! = Kh,vzzjz

e =1 =1 (K, ;)
f*v xz,)

X ’*): I N 17'1'1,,_71577.(’2:)
ft,v|a:z,j
AR

= —— m; ! (nTH')™ szﬁy]t
n =1 t=1 j=1
ko2) — (k. 2 ko2 k2
Hnlk ) = b 2) + palh,z) + gtk s) e
/vbt(k'7zj)

+op((n*)1/2).
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By U-statistic Hoeffding decomposition, we have that

T
Bu=— > Ty m Ewang|z = 210 f-(2))di(k, 2))1r, i + 0p((n*)71/7),

=1 t=1

where
100 <yy <Fk)
k.25 = — k. *
Pk, z0) fi (it|iz, 2i) pulF 25)
(O < Yit > < k) ftvxzi
—ck 2 gy = 0k, Ty = Xy, 2 = 2
[ft (’Uzt|xztazz) ftfvmz,i| i e ZZ]
0< i < k Tz,
vep(RO SV SR fuasay, e o)
JE il wie, 2i) [z
Also, let
n* T n
1 _ 0;;1(0 <y <K)(F =)
Bn5 = T m; ! ’I’LTH -1 Xt ] . Kh’,z,ji
3 S T L e e
f*v xz,)
X "t; | = 1Tn,j15n (Z:)
ft,v|a:z,j

By using the projection of U-statistics, we have that

B = —ZT Zm‘lfz ( (K Elzi|z = 2] — kE[waz; |2 = 2 ]e(z:)))

¢t() o ()12
xut(k,Z:)ITnﬂ-i_ P(( ) )
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Therefore, we have that

n* T

. 1 & 1
vn* — = Z?k m_l z itQi 17' i
(ﬂLC ﬂ) \/F;g( 7 \/ET ‘s i f zt&t s

=

\/_T sz_lf 22y (Elfa|vi = 0], 2 = 2, 2 = 2]

=1 t=1

_E[git|xit = xitaz' = Zﬂ)lm i

\/_*ZT lzm IE* xztxzt|zz =z ]0 fZ( ) ( )]-Tnﬂ
n

1 1
+ T_l '_1 z * —— k2E 4 P = *
vn* ; ;ml I (Z’)(W( [walzs = 2]

k
~kElaw]lz = 21000)) 7 L

+0,(6n)

— N (0, VLC)
by the Lindeberg central limit theorem, where

Vie = E*(9(+))

+EB* (T_l Z [mi_lfz(z;)xit&'t
t=1

+m; [z, (E[ﬂit|v¢ =0}, Ty = Ty, 2 = 27| — Elfu|va = x5, 2 = Zﬂ)

—m; B[y 2= 27100 f.(2F) e (K, 27)

_mz—lfz(zj) (2,112 (k‘ E[l’lt|21 = Z ] — kE[.’Elt-T,tlzl =z ]9(21*))> wt(k)* ]) )
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Gu = VA R
VSRR 0]+ V(2 HO ) )
Vi) (nH) " BRI+ i H R E e H)
VAR H) ™ 4 )™ bl + v
VS HY ) B+ B 4 Rl ) A )
VAR + RS YRR R RV )

+\/E77n = Op(l)a

and

Vit = VRO, (|11 4 (mn) V2 H) 2 Oy ([ 4 (nH')7Y2) = 0,(1).

Lemma C.15. Define An(2) = oy Sy S, 43, (03,) K ze, and m(z) =

*
Z25 =2

Ty E*[zjs1))2; = 2 fi(2), where Koz = Hlek( " ), then under As-

sumptions B5-BS,

Anl(Z)_l = m(z)_l +Op (Hh/”u + (lnn*)1/2(n*H/)_1/2)’

.....

0S.}, 0S8, is the boundary of the compact set S,, €, — 0 and ||W'||/e, — 0.

Proof: First, we have

E[Am(2)] = m(z) + O ([P]]"), (C.14)
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uniformly in z € Q.. Following similar arguments used in Masry (1996) when deriving

uniform convergence rates for nonparametric kernel estimators, we know that

nn* 1/2
An(e) = BT = 0, (e ) €15

uniformly in z € €),.

Combining (C.14) and (C.15) we obtain
Ay (2) = m(z) = Oy (IW]* + (mn*)> (1) ~12), (C.16)

uniformly in z € €),.

Using (C.16) we obtain

Au()™ = [m(2) + Au(z) —m(2)]
= m(2)"" = m(2) " [Au(2) —m(2)] m(z) " + O, (J[Au(2) — m(2))|)

= ()7 + O, (W + ()20 H) ),

which completes the proof of Lemma C.1.5.
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